Abstract

Concentrating optics are integrated into up-conversion photovoltaic (UC-PV) devices to independently concentrate sub-band-gap photons on the up-conversion layer, without affecting the full solar concentration on the overlying solar cell. The UC-PV devices consist of silicon solar cells optimized for up-conversion, coupled with tapered and parabolic dielectric concentrators, and hexagonal sodium yttrium fluoride (β-NaYF4) up-converter doped with 25% trivalent erbium (Er3+). A normalized external quantum efficiency of 1.75x10ˉ2 cm2/W and 3.38x10ˉ2 cm2/W was obtained for the UC-PV device utilizing tapered and parabolic concentrators respectively. Although low to moderate concentration was shown to maximize UC, higher concentration lead to saturation and reduced external quantum efficiency. The presented work highlights some of the implications associated with the development of UC-PV devices and designates a substantial step for integration in concentrating PV.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]
  2. A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
    [CrossRef]
  3. T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
    [CrossRef]
  4. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  5. M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [CrossRef]
  6. J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
    [CrossRef]
  7. A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).
  8. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
    [CrossRef]
  9. B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007).
    [CrossRef]
  10. H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
    [CrossRef]
  11. S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
    [CrossRef]
  12. S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
    [CrossRef]
  13. C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
    [CrossRef]
  14. J. Handy and T. Peterson, “Concentrating PV survey: an unbiased overview,” in SPIE Solar Energy + Technology, (International Society for Optics and Photonics, 2011), 810808–810808–810811.
  15. D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
    [CrossRef]
  16. G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
    [CrossRef]
  17. J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
    [CrossRef]
  18. E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
    [CrossRef]
  19. P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
    [CrossRef]
  20. A. Slade and V. Garboushian, “27.6% efficient silicon concentrator solar cells for mass production,” in Technical Digest,15th International Photovoltaic Science and Engineering Conference,Beijing, 2005)
  21. C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
    [CrossRef]
  22. C. Strümpel, “Application of erbium-doped up-converters to silicon solar cells,” Doctoral Thesis (Universität Konstanz, Konstanz, Germany, 2007).
  23. J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Optoelectronic and Microelectronic Materials and Devices,2008. COMMAD 2008. Conference on, (IEEE, 2008), 307–311.
    [CrossRef]
  24. A. Mohr, M. Steuder, A. Bett, and S. Glunz, “Silicon concentrator cells designed for a direct mounting on compound parabolic concentrator,” in Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on, (IEEE, 2003), 841–844.
  25. A. Mohr, “Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300×,” Doctoral Thesis (Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany, 2005).
  26. A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006).
    [CrossRef]
  27. M. Rüdiger, S. Fischer, J. Frank, A. Ivaturi, B. S. Richards, K. W. Krämer, M. Hermle, and J. C. Goldschmidt, “Bifacial n-Type Silicon Solar Cells for Upconversion Applications,” Sol. Energy Mater. Sol. Cells.
  28. K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
    [CrossRef]
  29. W. Welford and R. Winston, High Collection Nonimaging Optics (Academic Press, San Diego, 1989).
  30. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
    [CrossRef]
  31. J. M. Bennett and E. Ashley, “Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum,” Appl. Opt. 4(2), 221–224 (1965).
    [CrossRef]
  32. J. P. Zinter and M. J. Levene, “Maximizing fluorescence collection efficiency in multiphoton microscopy,” Opt. Express 19(16), 15348–15362 (2011).
    [CrossRef] [PubMed]
  33. J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997).
    [CrossRef]
  34. S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
    [CrossRef]
  35. F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011).
    [CrossRef]
  36. A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
    [CrossRef]
  37. R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic Press, Amsterdam; Boston, Mass., 2005).
  38. R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975).
    [CrossRef]

2014 (2)

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

2013 (5)

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
[CrossRef]

G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
[CrossRef]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[CrossRef]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

2012 (1)

2011 (2)

F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011).
[CrossRef]

J. P. Zinter and M. J. Levene, “Maximizing fluorescence collection efficiency in multiphoton microscopy,” Opt. Express 19(16), 15348–15362 (2011).
[CrossRef] [PubMed]

2010 (1)

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

2007 (1)

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007).
[CrossRef]

2006 (2)

A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006).
[CrossRef]

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

2005 (2)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

2004 (3)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

2002 (2)

C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[CrossRef]

T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

2001 (1)

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

2000 (1)

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

1997 (1)

J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997).
[CrossRef]

1996 (1)

P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

1990 (1)

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

1975 (1)

R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975).
[CrossRef]

1965 (1)

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Abram, R.

R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975).
[CrossRef]

Aebischer, A.

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

Algora, C.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Allen, R.

R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975).
[CrossRef]

Andreev, V. M.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Arnaoutakis, G. E.

G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
[CrossRef]

Ashley, E.

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Bennett, J. M.

Biner, D.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Boccolini, A.

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

Bruggemann, R.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Cooke, D.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

Diaz, V.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Dummer, D. J.

J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[CrossRef]

Faoro, R.

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

Favilla, E.

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

Feuermann, D.

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
[CrossRef]

Fischer, S.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Frohlich, B.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

Gamelin, D.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

García-Revilla, S.

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

Gerner, P.

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

Gibart, P.

P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Gleckman, P.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

Glunz, S. W.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006).
[CrossRef]

Goldschmidt, J.

H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
[CrossRef]

Goldschmidt, J. C.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Goodfellow, R.

R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975).
[CrossRef]

Gordon, J. M.

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
[CrossRef]

Green, M.

T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Gudel, H. U.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Güdel, H.

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Gueymard, C.

C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[CrossRef]

Guillaume, J.-C.

P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Guillemoles, J.-F.

F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011).
[CrossRef]

Hehlen, M.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Hehlen, M. P.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Hermle, M.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[CrossRef]

H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Huleihil, M.

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
[CrossRef]

Ivanova, S.

F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011).
[CrossRef]

Ivaturi, A.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[CrossRef]

Katz, E. A.

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
[CrossRef]

Khvostikov, V. P.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Kramer, K. W.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

Krämer, K.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Krämer, K. W.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Krebs, H.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

Levene, M. J.

Loper, P.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Luthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Lüthi, S.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

MacDougall, S. K.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[CrossRef]

Mallick, T. K.

G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
[CrossRef]

Marques-Hueso, J.

G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
[CrossRef]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[CrossRef]

Martín-Rodríguez, R.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

Meijerink, A.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

Mohr, A.

A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006).
[CrossRef]

Myers, D.

C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[CrossRef]

O’Gallagher, J.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

Ortiz, E.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Pellé, F.

F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011).
[CrossRef]

Pena, R.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Pollnau, M.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Quintanilla, M.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

Rey-Stolle, I.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Rice, J. P.

J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997).
[CrossRef]

Richards, B. S.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
[CrossRef]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[CrossRef]

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Richter, A.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[CrossRef]

Roth, T.

A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006).
[CrossRef]

Rudiger, M.

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

Rumyantsev, V. D.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

Sagie, D.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

Shalav, A.

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Steinkemper, H.

H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
[CrossRef]

Suyver, J.

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

Tonelli, M.

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

Veronesi, S.

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Winston, R.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

Wurfel, P.

T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

Zahraman, K.

P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Zinter, J. P.

Zong, Y.

J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, “Toward ultrahigh-flux photovoltaic concentration,” Appl. Phys. Lett. 84(18), 3642–3644 (2004).
[CrossRef]

Chem. Mater. (1)

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

EPJ Photovoltaics (1)

F. Pellé, S. Ivanova, and J.-F. Guillemoles, “Upconversion of 1.54 μm radiation in Er3+ doped fluoride-based materials for c-Si solar cell with improved efficiency,” EPJ Photovoltaics 2, 20601 (2011).
[CrossRef]

IEEE J. Photovoltaics (2)

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[CrossRef]

S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K. W. Krämer, B. S. Richards, and J. C. Goldschmidt, “Upconverter silicon solar cell devices for efficient utilization of sub-band-gap photons under concentrated solar radiation,” IEEE J. Photovoltaics 4(1), 183–189 (2014).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007).
[CrossRef]

C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron. Dev. 48(5), 840–844 (2001).
[CrossRef]

J. Appl. Phys. (6)

A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, and M. Tonelli, “BaY2F8 doped with Er3+: An upconverter material for photovoltaic application,” J. Appl. Phys. 114(6), 064904 (2013).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

R. Abram, R. Allen, and R. Goodfellow, “The coupling of light emitting diodes to optical fibers using sphere lenses,” J. Appl. Phys. 46(8), 3468–3474 (1975).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Kramer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114, 013505 (2013).

T. Trupke, M. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

P. Gibart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Nature (1)

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, and R. Winston, “Sunlight brighter than the sun,” Nature 346(6287), 802 (1990).
[CrossRef]

New J. Phys. (1)

H. Steinkemper, S. Fischer, M. Hermle, and J. Goldschmidt, “Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals,” New J. Phys. 15(5), 053033 (2013).
[CrossRef]

Opt. Eng. (1)

J. P. Rice, Y. Zong, and D. J. Dummer, “Spatial uniformity comparison of two nonimaging concentrators,” Opt. Eng. 36(11), 2943–2947 (1997).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[CrossRef]

Prog. Photovolt. Res. Appl. (3)

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra high flux and intensity distribution in multi junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one axis tracking and silicon concentrator cells,” Prog. Photovolt. Res. Appl. 14(7), 663–674 (2006).
[CrossRef]

Sol. Energy (2)

G. E. Arnaoutakis, J. Marques-Hueso, T. K. Mallick, and B. S. Richards, “Coupling of sunlight into optical fibres and spectral dependence for solar energy applications,” Sol. Energy 93, 235–243 (2013).
[CrossRef]

C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[CrossRef]

Other (9)

J. Handy and T. Peterson, “Concentrating PV survey: an unbiased overview,” in SPIE Solar Energy + Technology, (International Society for Optics and Photonics, 2011), 810808–810808–810811.

A. Slade and V. Garboushian, “27.6% efficient silicon concentrator solar cells for mass production,” in Technical Digest,15th International Photovoltaic Science and Engineering Conference,Beijing, 2005)

M. Rüdiger, S. Fischer, J. Frank, A. Ivaturi, B. S. Richards, K. W. Krämer, M. Hermle, and J. C. Goldschmidt, “Bifacial n-Type Silicon Solar Cells for Upconversion Applications,” Sol. Energy Mater. Sol. Cells.

W. Welford and R. Winston, High Collection Nonimaging Optics (Academic Press, San Diego, 1989).

C. Strümpel, “Application of erbium-doped up-converters to silicon solar cells,” Doctoral Thesis (Universität Konstanz, Konstanz, Germany, 2007).

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Optoelectronic and Microelectronic Materials and Devices,2008. COMMAD 2008. Conference on, (IEEE, 2008), 307–311.
[CrossRef]

A. Mohr, M. Steuder, A. Bett, and S. Glunz, “Silicon concentrator cells designed for a direct mounting on compound parabolic concentrator,” in Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on, (IEEE, 2003), 841–844.

A. Mohr, “Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300×,” Doctoral Thesis (Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany, 2005).

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic Press, Amsterdam; Boston, Mass., 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transitions in Er3+ responsible for up-conversion for photovoltaics. Upward solid lines represent absorption, downward solid lines represent emission, dotted lines represent energy transfer up-conversion and non-radiative relaxation is depicted by curved lines.

Fig. 2
Fig. 2

(a) Schematic of the UC-PV device with integrated optics behind the solar cell. For detailed characteristics the reader is referred to section 2, materials and methods. (b) One of the concentrators used in this study (parabolic) with a bifacial silicon solar cell attached. The UC phosphor is attached on the exit aperture of the parabolic concentrator.

Fig. 3
Fig. 3

EQE of UC-PV device characterized between 1450 and 1590 nm at 0.007 W/cm2 with five different secondary concentrator elements. The EQE closely resembles the 4I15/2 to 4I13/2 excitation spectrum of Er3+ shown on the secondary axis with main resonant peaks at 1497, 1508, 1522 nm.

Fig. 4
Fig. 4

Transmission of the concentrating elements of the UC-PV device as a function of wavelength between 900 and 1600 nm. The transmission of the bifacial solar cell is also plotted for comparison.

Fig. 5
Fig. 5

Backwards transmission of the concentrating elements of the UC-PV device as a function of the diameter of an isotropic emission center. The transmission of the objective lens, estimated from Eq. (2), is plotted for comparison.

Fig. 6
Fig. 6

Power dependent EQE of the PV-UC device for the strongest resonant peak at 1522 nm. The gradient of each least square fit indicates the order of the luminescence process involved on each device.

Fig. 7
Fig. 7

EQE of the PV-UC device for the resonant peak at 1522 nm at the UC layer. The power density on the UC layer and the respective regime, achieved by each concentrator, is indicated by the gradient.

Fig. 8
Fig. 8

Irradiance profile at the output of the parabolic and the tapered optics. Localized peak concentrations are observed for both, that are responsible for the gradient of the least square fits in Figs. 6 and 7.

Tables (1)

Tables Icon

Table 1 Comparison of UC-PV Devices Based on Er3+ with Aabsolute and Normalized EQE

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EQE= hc I sc λe P in ,
( 1 1 ( N A n ) 2 ) .
EQE P n P P n1 ,

Metrics