Abstract

Structural and optical properties of thick InGaN layers with strain and composition inhomogeneities are investigated. High resolution x-ray diffractions (XRD) and reciprocal space mapping (RSM) along an asymmetric axis reveal that the In composition inhomogeneity is accompanied by strain relaxations during the growth of thick InGaN layers. According to the structural analysis, the commonly observed double photoluminescence (PL) peaks have been confirmed to be associated with the strain relaxation in thick InGaN films. Temperature-dependent PL measurements further indicate that the relaxed phase in InGaN films exhibits better emission efficiency than the strained phase. Recombination dynamics reveal that the carrier localization effect is more pronounced in the relaxed phase due to the compositional pulling effect. The correlations between emission efficiency and localization effect in thick InGaN films are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kung and M. Razeghi, “III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology,” Opto-Electron. Rev. 8(3), 201–239 (2000).
  2. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  3. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
    [CrossRef] [PubMed]
  4. H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
    [CrossRef]
  5. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
  6. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
    [CrossRef]
  7. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
    [CrossRef]
  8. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
    [CrossRef]
  9. L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys. 104(2), 024507 (2008).
    [CrossRef]
  10. I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
    [CrossRef]
  11. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
    [CrossRef]
  12. S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
    [CrossRef]
  13. A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
    [CrossRef]
  14. N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
    [CrossRef]
  15. J. Adhikari and D. A. Kofke, “Molecular simulation study of miscibility in InxGa1-xN ternary alloys,” J. Appl. Phys. 95(8), 4500–4502 (2004).
    [CrossRef]
  16. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
    [CrossRef]
  17. Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1,5A), 2549–2559 (2003).
    [CrossRef]
  18. E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
    [CrossRef]
  19. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
    [CrossRef] [PubMed]
  20. B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
    [CrossRef]
  21. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).
  22. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
    [CrossRef]
  23. C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
    [CrossRef]
  24. B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
    [CrossRef]
  25. M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
    [CrossRef]
  26. C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
    [CrossRef]
  27. S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
    [CrossRef]
  28. Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
    [CrossRef]
  29. H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
    [CrossRef]
  30. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
    [CrossRef]
  31. K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).
  32. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
    [CrossRef]
  33. S. Pereira, K. P. O’Donnell, and E. Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007).
    [CrossRef]
  34. S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
    [CrossRef]
  35. H. T. Grahn, “Density of states and carrier statistics,” in Introduction to Semiconductor Physics (World Scientific, 1999).

2013 (1)

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

2011 (1)

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

2010 (2)

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
[CrossRef]

2009 (1)

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

2008 (3)

A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
[CrossRef]

L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys. 104(2), 024507 (2008).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

2007 (4)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

S. Pereira, K. P. O’Donnell, and E. Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007).
[CrossRef]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

2006 (2)

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

2005 (2)

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

2004 (3)

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
[CrossRef]

J. Adhikari and D. A. Kofke, “Molecular simulation study of miscibility in InxGa1-xN ternary alloys,” J. Appl. Phys. 95(8), 4500–4502 (2004).
[CrossRef]

2003 (4)

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1,5A), 2549–2559 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

2002 (4)

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

2001 (2)

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

2000 (1)

P. Kung and M. Razeghi, “III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology,” Opto-Electron. Rev. 8(3), 201–239 (2000).

1998 (1)

N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
[CrossRef]

1997 (2)

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[CrossRef]

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

1996 (1)

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

Aderhold, J.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Adhikari, J.

J. Adhikari and D. A. Kofke, “Molecular simulation study of miscibility in InxGa1-xN ternary alloys,” J. Appl. Phys. 95(8), 4500–4502 (2004).
[CrossRef]

Adikimenakis, A.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Ahmet, P.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Alexson, D.

A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
[CrossRef]

Aloni, S.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Alves, E.

S. Pereira, K. P. O’Donnell, and E. Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Androulidaki, M.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Aoyama, T.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Bechstedt, F.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Bedair, S. M.

N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
[CrossRef]

Bhuiyan, A. G.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

Blom, D. A.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Chang, C. A.

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

Chang, H. J.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

Chang, P.-H.

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

Chang, W. H.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Chen, C. H.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

Chen, C. Y.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Chen, H. Y.

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Chen, K. H.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

Chen, L. C.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

Chen, N. C.

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

Chen, N.-C.

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

Chen, W. K.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Chen, Y. F.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

Chichibu, S. F.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Chikyow, T.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Chou, W. C.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Correia, M. R.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Cruz, S. C.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Dahal, R.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

Davis, R.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Davydov, V. Yu.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Deatcher, C.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

Denbaars, S. P.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Dimakis, E.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Doppalapudi, D.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[CrossRef]

Dutta, M.

A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
[CrossRef]

El-Masry, N. A.

N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
[CrossRef]

Emtsev, V. V.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Farrell, R. M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Ferguson, I.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Franco, N.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

Fu, S. F.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Furthmüller, J.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Georgakilas, A.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Gradecak, S.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Graul, J.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Gwo, S.

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Harima, H.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Hashimoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Hiramatsu, K.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Ho, I.

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

Honsberg, C.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Hsu, C. H.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Hsu, L.

L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys. 104(2), 024507 (2008).
[CrossRef]

Iliopoulos, E.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Ishida, Y.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Ivanov, S. V.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Iza, M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Jani, O.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

Jiang, H. X.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
[CrossRef]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Kar, A.

A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
[CrossRef]

Kawaguchi, Y.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Ke, W. C.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Keller, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Kim, D.

M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
[CrossRef]

Kim, D.-J.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Kim, H.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kitamura, T.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Klochikhin, A. A.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Kofke, D. A.

J. Adhikari and D. A. Kofke, “Molecular simulation study of miscibility in InxGa1-xN ternary alloys,” J. Appl. Phys. 95(8), 4500–4502 (2004).
[CrossRef]

Kung, P.

P. Kung and M. Razeghi, “III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology,” Opto-Electron. Rev. 8(3), 201–239 (2000).

Kurtz, S.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

Kuwano, N.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Kuykendall, T.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Lan, Z. H.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

Lang, J. R.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Lee, H. M.

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Lee, J.-M.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Li, F. W.

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

Li, J.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
[CrossRef]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Li, Y.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Liang, C.-T.

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

Lieber, C. M.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Lin, H. W.

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Lin, J. Y.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
[CrossRef]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Lin, T. Y.

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

Liu, K. S.

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

Liu, S. X.

N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Lu, Y. J.

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Mahajan, S.

M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
[CrossRef]

Metzger, W. K.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

Mishra, U. K.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Moon, Y.-T.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Moustakas, T. D.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[CrossRef]

Mudryi, A. V.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Nakajima, K.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Nakamura, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Nanishi, Y.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1,5A), 2549–2559 (2003).
[CrossRef]

Neufeld, C. J.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

O’Donnell, K. P.

S. Pereira, K. P. O’Donnell, and E. Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Oh, J.-T.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Ok, Y.-W.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Oki, K.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Okumura, H.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Onuma, T.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Pantha, B.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

Pantha, B. N.

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

Park, J.-S.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Park, S.-J.

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

Pelekanos, N. T.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Pereira, E.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Pereira, S.

S. Pereira, K. P. O’Donnell, and E. Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Piner, E. L.

N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
[CrossRef]

Qian, F.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Rao, M.

M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
[CrossRef]

Razeghi, M.

P. Kung and M. Razeghi, “III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology,” Opto-Electron. Rev. 8(3), 201–239 (2000).

Romano, L. T.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[CrossRef]

Saito, Y.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1,5A), 2549–2559 (2003).
[CrossRef]

Sawaki, N.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Sequeira, A. D.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

Shan, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

Shih, C. F.

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

Shimizu, M.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Singh, R.

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[CrossRef]

Sota, T.

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Speck, J. S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

Stringfellow, G. B.

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

Stroscio, M. A.

A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
[CrossRef]

Sweeney, F.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Taki, W.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Tang, T.-Y.

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

Trager-Cowan, C.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Tsagaraki, K.

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Tsuda, H.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Ulrich, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Vekshin, V. V.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Walukiewicz, W.

L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys. 104(2), 024507 (2008).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Watson, I. M.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Wu, Y.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Xiang, J.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Yamaguchi, T.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1,5A), 2549–2559 (2003).
[CrossRef]

Yamamoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

Yan, H.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Yang, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

Zheleva, T.

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Adv. Funct. Mater. (1)

S. Pereira, K. P. O’Donnell, and E. Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007).
[CrossRef]

Appl. Phys. Lett. (16)

Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett. 79(5), 599–601 (2001).
[CrossRef]

H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” Appl. Phys. Lett. 86(2), 021911 (2005).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers studied by reciprocal space mapping by high-resolution X-ray diffraction,” Appl. Phys. Lett. 80(21), 3913–3915 (2002).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 93(18), 182107 (2008).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002).
[CrossRef]

C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 85(25), 6131–6133 (2004).
[CrossRef]

B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett. 96(23), 232105 (2010).
[CrossRef]

M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004).
[CrossRef]

H. W. Lin, Y. J. Lu, H. Y. Chen, H. M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[CrossRef]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[CrossRef]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[CrossRef]

I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996).
[CrossRef]

R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett. 81(7), 1207–1209 (2002).
[CrossRef]

N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 72(1), 40–42 (1998).
[CrossRef]

J. Appl. Phys. (5)

J. Adhikari and D. A. Kofke, “Molecular simulation study of miscibility in InxGa1-xN ternary alloys,” J. Appl. Phys. 95(8), 4500–4502 (2004).
[CrossRef]

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779–2808 (2003).
[CrossRef]

A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, “Evidence of compositional inhomogeneity in InxGa1−xN alloys using ultraviolet and visible Raman spectroscopy,” J. Appl. Phys. 104(7), 073502 (2008).
[CrossRef]

L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys. 104(2), 024507 (2008).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).

J. Cryst. Growth (1)

S. F. Fu, C. Y. Chen, F. W. Li, C. H. Hsu, W. C. Chou, W. H. Chang, W. K. Chen, and W. C. Ke, “Growth of optical-quality, uniform In-rich InGaN films using two-heater metal-organic chemical vapor deposition,” J. Cryst. Growth 383(15), 106–111 (2013).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate,” J. Vac. Sci. Technol. B 21(4), 1856–1862 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

C. A. Chang, T.-Y. Tang, P.-H. Chang, N.-C. Chen, and C.-T. Liang, “Magnesium Doping of In-rich InGaN,” Jpn. J. Appl. Phys. 46(5A), 2840–2843 (2007).
[CrossRef]

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1,5A), 2549–2559 (2003).
[CrossRef]

MRS Internet J. Nitride Semicond. Res. (1)

K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res. 2(6), 6 (1997).

Nano Lett. (1)

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Opto-Electron. Rev. (1)

P. Kung and M. Razeghi, “III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology,” Opto-Electron. Rev. 8(3), 201–239 (2000).

Phys. Rev. B (1)

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B 64(20), 205311 (2001).
[CrossRef]

Phys. Status Solidi (2)

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi 230(2), R4–R6 (2002).

E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi 203(1), 102–105 (2006).
[CrossRef]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Other (1)

H. T. Grahn, “Density of states and carrier statistics,” in Introduction to Semiconductor Physics (World Scientific, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) X-ray diffraction and (b) PL spectra of InGaN films grown at different temperatures from 675 to 750 °C.

Fig. 2
Fig. 2

Reciprocal space mapping of InGaN films grown at (a) 675 °C, (b) 700 °C, (c) 725 °C, and (d) 750 °C.

Fig. 3
Fig. 3

(a) RSM of d < 20 nm InGaN film grown at 675 °C. (b) PL spectra of InGaN films with different thickness grown at 675 °C.

Fig. 4
Fig. 4

(a) Temperature-dependent PL of InGaN film grown at 725 °C. (b) Integrated PL intensity as a function of temperature for both phases. (c) Emission efficiency (η) of both phases and (d) RT PL intensity of relaxed phase as a function of Tg.

Fig. 5
Fig. 5

(a) TRPL spectra measured at 12 K and (b) the effective carrier lifetimes deduced from decay traces for both phases as a function of Tg.

Fig. 6
Fig. 6

Energy-dependent TRPL of InGaN films grown at 675 °C for (a) strained phase and (b) relaxed phase.

Fig. 7
Fig. 7

The measured decay time τ as a function of temperature T for (a) the strained phase and (b) the relaxed phase of the InGaN film grown at 725 °C. The deduced radiaive τr(T) and nonradiative τnr(T) lifetimes are also shown. (c) The PL peak energies of the strained and relaxed phases as a function of temperature for the same sample.

Tables (1)

Tables Icon

Table 1 Thickness d, Lattice Constants a and c, and In Composition x of InGaN Films Grown at Different Growth Temperatures Tg

Metrics