Abstract

We studied the influence of geometric parameters on the optical absorption of gallium arsenide (GaAs) nanocone and nanowire arrays via finite difference time domain simulations. We optimized the structural parameters of the nanocone and nanowire arrays to maximize the ultimate efficiency across a range of lengths from 100 to 1000 nm. Nanocone arrays were found to have improved solar absorption, short-circuit current density, and ultimate efficiencies over nanowire arrays for a wide range of lengths. Detailed simulations reveal that nanocones have superior absorption due to reduced reflection from their smaller tip and reduced transmission from their larger base. Breaking the vertical mirror symmetry of nanowires results in a broader absorption spectrum such that overall efficiencies are enhanced for nanocones. We also evaluated the electric field intensity, carrier generation and angle-dependent optical properties of nanocones and nanowires. The carrier generation in nanocone arrays occurs away from the surface and is more uniform over the entire structure, which should result in less recombination losses than in nanowire arrays.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Devices 31, 671–678 (1984).
    [CrossRef]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
    [CrossRef] [PubMed]
  3. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
    [CrossRef] [PubMed]
  4. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
    [CrossRef]
  5. B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
    [CrossRef] [PubMed]
  6. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  7. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
    [CrossRef] [PubMed]
  8. B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
    [CrossRef]
  9. J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
    [CrossRef]
  10. C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
    [CrossRef]
  11. G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
    [CrossRef]
  12. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009).
    [CrossRef] [PubMed]
  13. C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008).
    [CrossRef] [PubMed]
  14. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
    [CrossRef] [PubMed]
  15. L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
    [CrossRef]
  16. H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
    [CrossRef] [PubMed]
  17. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012).
    [CrossRef]
  18. “Solar spectral irradiance: Air mass 1.5”.
  19. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  21. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  22. L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
    [CrossRef] [PubMed]
  23. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).
    [CrossRef] [PubMed]

2013 (1)

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

2012 (3)

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[CrossRef] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012).
[CrossRef]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).
[CrossRef] [PubMed]

2011 (2)

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

2010 (5)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

2009 (4)

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009).
[CrossRef] [PubMed]

C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

2005 (1)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

1994 (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1984 (1)

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Devices 31, 671–678 (1984).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Arakcheeva, E. M.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Berenger, J.

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Bouravleuv, A. D.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Cao, L.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Caram, J.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Cirlin, G. E.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Clemens, B. M.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Colombo, C.

C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Comedi, D.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

Czaban, J.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

Czaban, J. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009).
[CrossRef] [PubMed]

Dubrovskii, V. G.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Fan, Z.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

Fontcuberta i Morral, A.

C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Gratzel, M.

C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Green, M.

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Devices 31, 671–678 (1984).
[CrossRef]

Guo, H.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

Hei, M.

C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Ho, B. J.

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Hua, B.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

Huang, N.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012).
[CrossRef]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef] [PubMed]

Jiang, B.

Jiang, P.

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

LaPierre, R. R.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009).
[CrossRef] [PubMed]

Lee, S.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef] [PubMed]

Leu, P. W.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[CrossRef] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).
[CrossRef] [PubMed]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Li, X.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Park, J.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Peng, K.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Povinelli, M. L.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Samsonenko, Y. B.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Sandoval, C.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

Schuller, J. A.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Shen, Y.

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef] [PubMed]

Soshnikov, I. P.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Sun, C.-H.

Tanklevskaya, E. M.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

Thompson, D. A.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009).
[CrossRef] [PubMed]

Tirado, M.

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Wang, B.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[CrossRef] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).
[CrossRef] [PubMed]

Wang, Y.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

Wen, L.

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

Werner, P.

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

White, J. S.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Wu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Xu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Yu, J. S.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef] [PubMed]

Yu, M.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

Zhao, Z.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

Zhu, J.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011).
[CrossRef]

IEEE Trans. Electron. Devices (1)

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Devices 31, 671–678 (1984).
[CrossRef]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Opt. (1)

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012).
[CrossRef]

Nano Energy (1)

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013).
[CrossRef]

Nano Lett. (3)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (2)

G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010).
[CrossRef]

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011).
[CrossRef] [PubMed]

Nanotechnology (2)

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[CrossRef] [PubMed]

J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010).
[CrossRef]

Nat. Mater. (2)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Small (2)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef] [PubMed]

Other (2)

“Solar spectral irradiance: Air mass 1.5”.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the GaAs nanocone array structure. (b) The parameters for the array are the length L, the period a, the top diameter dtop, and the bottom diameter dbot.

Fig. 2
Fig. 2

Plots of the (a) real n and (b) imaginary part k of the GaAs refractive index. Values from Palik Volume 1 [20] and FDTD fitted values are shown.

Fig. 3
Fig. 3

(a) Optimal ultimate efficiency of GaAs nanowires and nanocones as compared with thin film and ideal single pass thin film. The short-circuit (SC) current density is shown on the right y-axis. (b) The ultimate efficiency enhancement from GaAs nanowires and nanocones compared to ideal single pass thin film.

Fig. 4
Fig. 4

Optimal parameters for GaAs (a) nanowire and (b) nanocone for each length L, respectively. The volume filling factor of the optimal structure is shown on the right y-axis of both plots.

Fig. 5
Fig. 5

Optical properties of three different GaAs nanostructures: nanowire (NW) arrays with d = 200 nm and d = 520 nm and nanocone (NC) arrays with dtop = 200 nm and dbot = 600 nm. a = 600nm in all three systems. (a), (b), and (c) show the reflectance, transmittance, and absorption spectra respectively. The absorption spectrum of the ideal single pass thin film is also plot in (c). The irradiance of the Air Mass 1.5 global solar spectrum is shown in right y-axis of (c).

Fig. 6
Fig. 6

The (a) electric field intensity |E(r)|2 and (b) solar-spectrum-weighted generation rate G(r) for three representative GaAs nanowires and nanocones. From left to right, they are nanowire arrays with d = 520 nm, nanowire arrays with d = 200 nm, and nanocone arrays with dtop = 200 nm and dbot = 600 nm. a = 600 nm in all three systems.

Fig. 7
Fig. 7

Relationship between absorption and zenith angle θ of optimal nanowire and nan-cone arrays for TM and TE illumination.

Tables (1)

Tables Icon

Table 1 Absorption in different wavelength regimes. a = 600 nm in all three systems. The infrared and total solar regions are calculated for those portions that are above the GaAs band gap (E > 1.43 eV).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = E g I ( E ) A ( E ) E g E d E 0 I ( E ) d E
J s c = q E g I ( E ) E A ( E ) d E .
A ( E ) = 1 exp [ α ( E ) L ]
G ( r , E ) = ε i ( E ) | E ( r , E ) | 2 2

Metrics