Abstract

Metal nanogratings as one of the promising architectures for effective light trapping in organic photovoltaics (OPVs) have been actively studied over the past decade. Here we designed a novel metal nanowall grating with ultra-small period and ultra-high aspect-ratio as the back electrode of the OPV device. Such grating results in the strong hot spot effect in-between the neighboring nanowalls and the localized surface plasmon effect at the corners of nanowalls. These combined effects make the integrated absorption efficiency of light over the wavelength range from 400 to 650 nm in the active layer for the proposed structure, with respect to the equivalent planar structure, increases by 102% at TM polarization and by 36.5% at the TM/TE hybrid polarization, respectively. Moreover, it is noted that the hot spot effect in the proposed structure is more effective for ultra-thin active layers, which is very favorable for the exciton dissociation and charge collection. Therefore such a nanowall grating is expected to improve the overall performance of OPV devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
    [CrossRef]
  2. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
    [CrossRef]
  3. J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
    [CrossRef] [PubMed]
  4. X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
    [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  6. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
    [CrossRef] [PubMed]
  7. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
    [CrossRef] [PubMed]
  8. D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
    [CrossRef] [PubMed]
  9. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
    [CrossRef] [PubMed]
  10. K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
    [CrossRef]
  11. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [CrossRef]
  12. M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
    [CrossRef] [PubMed]
  13. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
    [CrossRef] [PubMed]
  14. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5Suppl 5), A729–A739 (2012).
    [CrossRef] [PubMed]
  15. Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
    [CrossRef]
  16. A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
    [CrossRef] [PubMed]
  17. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
    [CrossRef]
  18. W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett. 101(22), 223302 (2012).
    [CrossRef]
  19. Y. Liu and J. Kim, “Polarization-diverse broadband absorption enhancement in thin-film photovoltaic devices using long-pitch metallic gratings,” J. Opt. Soc. Am. B 28(8), 1934–1939 (2011).
    [CrossRef]
  20. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
    [CrossRef]
  21. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
    [CrossRef] [PubMed]
  22. S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express 21(4), 4055–4060 (2013).
    [CrossRef] [PubMed]
  23. Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
    [CrossRef] [PubMed]
  24. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
    [CrossRef] [PubMed]
  25. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
    [CrossRef] [PubMed]
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [CrossRef]
  27. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
    [CrossRef] [PubMed]
  28. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express 19(27), 26056–26064 (2011).
    [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids: Index (Access Online via Elsevier, 1998).
  30. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [CrossRef]
  31. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett. 34(1), 16–18 (2009).
    [CrossRef] [PubMed]

2013 (3)

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express 21(4), 4055–4060 (2013).
[CrossRef] [PubMed]

2012 (7)

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett. 101(22), 223302 (2012).
[CrossRef]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[CrossRef]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5Suppl 5), A729–A739 (2012).
[CrossRef] [PubMed]

2011 (9)

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[CrossRef]

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
[CrossRef] [PubMed]

Y. Liu and J. Kim, “Polarization-diverse broadband absorption enhancement in thin-film photovoltaic devices using long-pitch metallic gratings,” J. Opt. Soc. Am. B 28(8), 1934–1939 (2011).
[CrossRef]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express 19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

2010 (4)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

2007 (1)

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

2004 (1)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

2001 (1)

1986 (1)

Aoki, N.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Baba, A.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Bezares, F. J.

Caldwell, J. D.

Camden, J. P.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Cao, Y.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Chaudhary, S.

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[CrossRef] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Cho Chew, W.

W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett. 101(22), 223302 (2012).
[CrossRef]

Choi, K. W.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Choy, W. C. H.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett. 101(22), 223302 (2012).
[CrossRef]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Constant, K.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Cui, Y.

Demir, H. V.

Dieringer, J. A.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Ding, B.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Feng, J.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Fung, D. D. S.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Gan, Q.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Gaylord, T. K.

Ginger, D. S.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Glembocki, O. J.

Guo, L. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Guo, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Guyer, S. R.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Hatanpää, T. T.

He, S.

He, Z.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Heeger, A. J.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Ho, K. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Ho, K.-M.

Hosten, C. M.

Hou, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Huo, L.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Im, S. H.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

In, S.

Inganas, O.

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Jeong, D. S.

Kafafi, Z. H.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Kaneko, F.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

Kang, M. G.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Kariniemi, M. I.

Kasica, R.

Kato, K.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

Kim, I.

Kim, J.

Kim, T. G.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Kim, Y.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Ko, D. H.

Kottmann, J. P.

Kuang, P.

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[CrossRef] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Kulkarni, A. P.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Lee, K.-S.

Lee, S.

Lee, T. S.

Lee, W. S.

Leskelä, M. A.

Leung, W.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Li, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Li, X. B.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Li, X. H.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Li, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Liu, Y.

Lopez, R.

Luo, X.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Maes, B.

Mahadevapuram, R. C.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Marks, L. D.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

Masiello, D. J.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Mason, D. R.

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Moharam, M. G.

Munechika, K.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Nalwa, K. S.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Niinistö, J. T.

Noone, K. M.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Okyay, A. K.

Park, H. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Park, J. H.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Park, J. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Park, N.

Park, O. O.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Persson, N. K.

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Prokes, S. M.

Rahachou, A.

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Rendell, R. W.

Ritala, M. K.

Samulski, E. T.

Schatz, G. C.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Sefunc, M. A.

Seo, J. H.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Sha, W. E. I.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett. 101(22), 223302 (2012).
[CrossRef]

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Shen, H.

Shinbo, K.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

Song, J. F.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Su, S.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Sun, H. B.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Sun, Z.

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[CrossRef]

Tumbleston, J. R.

Tvingstedt, K.

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Ukaegbu, M.

Van Duyne, R. P.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Wang, D. H.

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Wang, Y.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

Wu, H.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Xie, F.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Xie, F. X.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Xu, M.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Xu, T.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Yang, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[CrossRef]

Ye, Z.

You, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Zhang, X. L.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Zhong, C.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[CrossRef]

Zozoulenko, I. V.

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Zuo, X.

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[CrossRef]

ACS Appl. Mater. Interfaces (1)

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces 3(6), 2080–2084 (2011).
[CrossRef] [PubMed]

Adv. Mater. (4)

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(24), 5519–5523 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett. 101(22), 223302 (2012).
[CrossRef]

K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C 116(12), 7200–7206 (2012).
[CrossRef]

Nano Lett. (2)

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[CrossRef]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–597 (2012).
[CrossRef]

Opt. Express (8)

J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
[CrossRef] [PubMed]

S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express 21(4), 4055–4060 (2013).
[CrossRef] [PubMed]

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express 19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
[CrossRef] [PubMed]

H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5Suppl 5), A729–A739 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Org. Electron. (1)

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron. 14(6), 1577–1585 (2013).
[CrossRef]

Plasmonics (1)

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids: Index (Access Online via Elsevier, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Structural diagram of the proposed OPV device with periodic silver nanowalls. (b) Complex refractive indices of P3HT:PCBM (1:1), PEDOT:PSS and ITO with n and k representing the real and imaginary parts, respectively.

Fig. 2
Fig. 2

(a) Integrated absorption efficiency of light in the active layer (ATotal) as a function of the thickness of the active layer for the planar OPV device. The inset presents the structural diagram of the planar device and a few examples of absorption spectra of the active layer for R1, R2 and R3 denoting the devices with teff = 24.5, 60 and 205 nm, respectively. (b) Absorption spectra of the active layer for the proposed device at TM, TE and TM/TE hybrid polarizations. That for the planar reference device R1 is redraw for comparison. For TM polarization case, two peaks and one valley are labeled: λ1 = 460 nm, λ2 = 528 nm and λ3 = 583 nm. (c) The ratio of the integrated absorption efficiency of light in the active layer (Aratio) for the proposed structure over that of the planar reference device as a function of the active layer thickness t. The planar devices in comparison have the corresponding equivalent thickness teff. (d) Absorption spectra of each layer as well as the whole device at TM polarization.

Fig. 3
Fig. 3

Distributions of the electric field |E| and magnetic field |H| at different wavelengths for the proposed structure at TM or TE polarization. λ1 = 460 nm, λ2 = 528 nm and λ3 = 583 nm, as labeled in Fig. 2(b).

Fig. 4
Fig. 4

(a-c) Angular dependent absorption spectra of the active layer for TM, TE and hybrid polarizations for the proposed structure. (d) Integrated absorption efficiency in the active layer (ATotal) versus the incidence angle θ at different polarizations.

Fig. 5
Fig. 5

(a-c) Maps of integrated absorption efficiency of light in the active layer versus the grating dimensions w and h at TM, TE and the hybrid polarizations, respectively. Case A represents our default device with w = 7 nm and h = 30 nm when the integrated efficiency at TM polarization is optimized. In (c), the integrated efficiency is optimized at case C with w = 7 nm and h = 8 nm, denoted by AT_Max. Two dashed lines represent the contour lines corresponding to the integrated efficiency of 95% and 90% of the maximum AT_Max. Case B with w = 7 nm and h = 23 nm lies on the 95%*AT_Max contour line and case A is very close to the 90% contour line. (d) Integrated absorption efficiency of light in the active layer (ATotal) as a function of the grating period p at different polarizations. (e) ATotal as a function of p at the hybrid polarization for different cases.

Metrics