Abstract

We report the efficiency enhancement of III-V InGaP/GaAs/ Ge triple-junction (TJ) solar cells using a novel structure, i.e., vertically-oriented gallium oxide hydroxide (GaOOH) nanopillars (NPs), as an antireflection coating. The optical reflectance properties of rhombus-shaped GaOOH NPs, which were synthesized by a simple, low-cost, and large-scalable electrochemical deposition method, were investigated, together with a theoretical analysis using the rigorous coupled-wave analysis method. For the GaOOH NPs, the solar weighted reflectance of ~8.5% was obtained over a wide wavelength range of 300-1800 nm and their surfaces exhibited a high water contact angle of ~130° (i.e., hydrophobicity). To simply demonstrate the feasibility of device applications, the GaOOH NPs were incorporated into a test-grown InGaP/GaAs/Ge TJ solar cell structure. For the InGaP/GaAs/Ge TJ solar cell with broadband antireflective GaOOH NPs, the conversion efficiency (η) of ~16.47% was obtained, indicating an increased efficiency by 3.47% compared to the bare solar cell (i.e., η~13%).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
    [CrossRef]
  2. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
    [CrossRef]
  3. D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
    [CrossRef]
  4. D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
    [CrossRef]
  5. X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
    [CrossRef]
  6. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
    [CrossRef]
  7. C. H. Chang, J. A. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36(12), 2354–2356 (2011).
    [CrossRef] [PubMed]
  8. J. W. Leem, Y. M. Song, and J. S. Yu, “Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications,” Nanoscale 5(21), 10455–10460 (2013).
    [CrossRef] [PubMed]
  9. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  10. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
    [CrossRef]
  11. H. K. Lee, M. S. Kim, and J. S. Yu, “Enhanced light extraction of GaN-based Green light-emitting diodes with GaOOH rods,” IEEE Photon. Technol. Lett. 24(4), 285–287 (2012).
    [CrossRef]
  12. M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
    [CrossRef] [PubMed]
  13. S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
    [CrossRef] [PubMed]
  14. H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
    [CrossRef] [PubMed]
  15. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  16. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
    [CrossRef]
  17. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
    [CrossRef]

2013

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

J. W. Leem, Y. M. Song, and J. S. Yu, “Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications,” Nanoscale 5(21), 10455–10460 (2013).
[CrossRef] [PubMed]

2012

H. K. Lee, M. S. Kim, and J. S. Yu, “Enhanced light extraction of GaN-based Green light-emitting diodes with GaOOH rods,” IEEE Photon. Technol. Lett. 24(4), 285–287 (2012).
[CrossRef]

H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
[CrossRef] [PubMed]

2011

2010

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

2009

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

2008

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

2007

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

2000

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[CrossRef]

1998

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

1979

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Aiken, D. J.

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[CrossRef]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Barbastathis, G.

Bouhafs, D.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Chang, C. H.

C. H. Chang, J. A. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36(12), 2354–2356 (2011).
[CrossRef] [PubMed]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, Y. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chikouche, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Chiu, C. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Cho, J.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Choi, H. J.

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Dominguez-Caballero, J. A.

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Ferrazza, F.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Fu, X.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

He, Y.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Hottier, F.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hsu, S. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Joo, D. H.

H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
[CrossRef] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

Kim, J. K.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Kim, M. S.

H. K. Lee, M. S. Kim, and J. S. Yu, “Enhanced light extraction of GaN-based Green light-emitting diodes with GaOOH rods,” IEEE Photon. Technol. Lett. 24(4), 285–287 (2012).
[CrossRef]

H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
[CrossRef] [PubMed]

Kuo, H. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Lee, H. K.

H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
[CrossRef] [PubMed]

H. K. Lee, M. S. Kim, and J. S. Yu, “Enhanced light extraction of GaN-based Green light-emitting diodes with GaOOH rods,” IEEE Photon. Technol. Lett. 24(4), 285–287 (2012).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Leem, J. W.

J. W. Leem, Y. M. Song, and J. S. Yu, “Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications,” Nanoscale 5(21), 10455–10460 (2013).
[CrossRef] [PubMed]

Li, D.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Li, W.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Li, Z.

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Moussi, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Poxson, D. J.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Ruiz, J. M.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

Schubert, E. F.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Shao, Y.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Song, Y. M.

J. W. Leem, Y. M. Song, and J. S. Yu, “Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications,” Nanoscale 5(21), 10455–10460 (2013).
[CrossRef] [PubMed]

Sood, A. K.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Sun, M.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Wan, L.

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

Wang, A.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Welser, R. E.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Xiao, G.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

Yan, S.

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

Yan, X.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Yang, C. S.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J. S.

J. W. Leem, Y. M. Song, and J. S. Yu, “Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications,” Nanoscale 5(21), 10455–10460 (2013).
[CrossRef] [PubMed]

H. K. Lee, M. S. Kim, and J. S. Yu, “Enhanced light extraction of GaN-based Green light-emitting diodes with GaOOH rods,” IEEE Photon. Technol. Lett. 24(4), 285–287 (2012).
[CrossRef]

H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
[CrossRef] [PubMed]

Yu, P.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

Zhang, W.

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Zhou, Y.

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zou, Z.

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Adv. Mater.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflection indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Appl. Phys. Lett.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Chem. Commun. (Camb.)

S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou, “Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun. (Camb.) 46(34), 6388–6390 (2010).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

H. K. Lee, M. S. Kim, and J. S. Yu, “Enhanced light extraction of GaN-based Green light-emitting diodes with GaOOH rods,” IEEE Photon. Technol. Lett. 24(4), 285–287 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[CrossRef]

Nano Lett.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar Cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Nanoscale

J. W. Leem, Y. M. Song, and J. S. Yu, “Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications,” Nanoscale 5(21), 10455–10460 (2013).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

H. K. Lee, D. H. Joo, M. S. Kim, and J. S. Yu, “Improved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer,” Nanoscale Res. Lett. 7(1), 458 (2012).
[CrossRef] [PubMed]

Nanotechnology

M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, and Y. He, “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds,” Nanotechnology 21(35), 355601 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Prog. Photovolt. Res. Appl.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[CrossRef]

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of layer structure of the III-V InGaP/GaAs/Ge TJ solar cell with GaOOH NPs grown by the ED method.

Fig. 2
Fig. 2

(a) Calculated Ravg and SWR of ATO/Ge as a function of ATO film thickness and (b) top- and side-view SEM images of the GaOOH NPs grown on the ATO/Ge substrate. The n and k of ATO and Ge used in this calculation are shown in the inset of (a).

Fig. 3
Fig. 3

(a) Measured reflectance spectra of Ge substrate, ATO/Ge and GaOOH NPs/ATO/Ge and solar spectral irradiance of AM1.5g and (b) calculated reflectance spectra and electric field intensity distributions at λ = 800 nm of (i) Ge substrate, (ii) ATO/Ge, and (iii) GaOOH NPs/ATO/Ge. For comparison, the measured reflectance spectrum of a typical Al2O3/TiO2 DLARC is also shown in (a).

Fig. 4
Fig. 4

Photograph images of a water droplet on the Ge substrate, ATO/Ge, and GaOOH NPs/ATO/Ge.

Fig. 5
Fig. 5

(a) Low- and high-magnification SEM images of GaOOH NPs grown on the InGaP/GaAs/Ge TJ solar cell with the ATO seed layer and (b) measured J-V characteristics on the test-grown III-V InGaP/GaAs/Ge TJ solar cells with ATO film, GaOOH NPs/ATO seed layer, and Al2O3/TiO2 double-layer as an ARC. For a reference, the measured J-V curve of solar cell with the bare surface is also shown in (b). The device characteristics of the corresponding solar cells are summarized in the inset of (b).

Metrics