Abstract

Nanostructures have the potential to significantly increase the output power-density of ultra-thin photovoltaic devices by scattering incident sunlight into resonant guided modes. We applied a modified version of the direct-binary-search algorithm to design such nanostructures in order to maximize the output power-density under oblique-illumination conditions. We show that with appropriate design of nanostructured cladding layers, it is possible for a 10nm-thick organic absorber to produce an average peak power-density of 4mW/cm2 with incident polar angle ranging from −90° to 90° and incident azimuthal angle ranging from −23.5° to 23.5°. Using careful modal and spectral analysis, we further show that an optimal trade-off of absorption at λ~510nm among various angles of incidence is essential to excellent performance under oblique illumination. Finally, we show that the optimized device with no sun tracking can produce on an average 7.23 times more energy per year than that produced by a comparable unpatterned device with an optimal anti-reflection coating.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19(07), 1924–1945 (2004).
    [CrossRef]
  2. C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).
  3. M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
    [CrossRef] [PubMed]
  4. T. L. Benanti and D. Venkataraman, “Organic solar cells: an overview focusing on active layer morphology,” Photosynth. Res. 87(1), 73–81 (2006).
    [CrossRef] [PubMed]
  5. J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
    [CrossRef] [PubMed]
  6. P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21(5), 6274–6285 (2013).
    [CrossRef] [PubMed]
  7. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011).
    [CrossRef] [PubMed]
  8. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
    [PubMed]
  9. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
    [CrossRef] [PubMed]
  10. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
    [CrossRef] [PubMed]
  11. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
    [CrossRef]
  12. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  13. A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
    [CrossRef]
  14. S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209–1217 (2013).
    [CrossRef] [PubMed]
  15. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20(2), 1849–1855 (2012).
    [CrossRef] [PubMed]
  16. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
    [CrossRef]
  17. A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
    [CrossRef]
  18. M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
    [CrossRef] [PubMed]
  19. P. Wang and R. Menon, “Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states,” Opt. Express 22(S1), A99–A110 (2014).
    [CrossRef]
  20. G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
    [CrossRef] [PubMed]
  21. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [CrossRef] [PubMed]
  22. Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
    [CrossRef] [PubMed]
  23. http://en.wikipedia.org/wiki/Monocrystalline_silicon

2014 (1)

2013 (2)

2012 (4)

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20(2), 1849–1855 (2012).
[CrossRef] [PubMed]

G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[CrossRef] [PubMed]

2011 (6)

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011).
[CrossRef] [PubMed]

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
[PubMed]

2009 (4)

J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

2008 (3)

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

2006 (1)

T. L. Benanti and D. Venkataraman, “Organic solar cells: an overview focusing on active layer morphology,” Photosynth. Res. 87(1), 73–81 (2006).
[CrossRef] [PubMed]

2004 (1)

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19(07), 1924–1945 (2004).
[CrossRef]

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Bauer, S.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Benanti, T. L.

T. L. Benanti and D. Venkataraman, “Organic solar cells: an overview focusing on active layer morphology,” Photosynth. Res. 87(1), 73–81 (2006).
[CrossRef] [PubMed]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Brédas, J. L.

J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
[CrossRef] [PubMed]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Cornil, J.

J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
[CrossRef] [PubMed]

Coropceanu, V.

J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
[CrossRef] [PubMed]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
[PubMed]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Domínguez-Caballero, J. A.

Ducharme, S.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Fan, S.

S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209–1217 (2013).
[CrossRef] [PubMed]

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011).
[CrossRef] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
[PubMed]

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

Glowacki, E. D.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Gruverman, A.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Hoppe, H.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19(07), 1924–1945 (2004).
[CrossRef]

Huang, J.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Kaltenbrunner, M.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Kariis, H.

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

Kim, G.

Ko, D.-H.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Leclerc, M.

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

Lee, J.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

Lenz, A.

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
[PubMed]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Menon, R.

Min, C.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Najari, A.

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

Norton, J. E.

J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
[CrossRef] [PubMed]

Oh, S.-H.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Ojamae, L.

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

Ostfeld, A. E.

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

Pacifici, D.

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

Persson, P.

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

Poddar, S.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Pohl, A.

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

Raman, A.

Reece, T. J.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Sandhu, S.

Sariciftci, N. S.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19(07), 1924–1945 (2004).
[CrossRef]

Sekitani, T.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Sharma, P.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Someya, T.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Venkataraman, D.

T. L. Benanti and D. Venkataraman, “Organic solar cells: an overview focusing on active layer morphology,” Photosynth. Res. 87(1), 73–81 (2006).
[CrossRef] [PubMed]

Veronis, G.

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
[PubMed]

Wang, P.

White, M. S.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Yang, Y.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Yu, Z.

Yuan, Y.

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res. 42(11), 1691–1699 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 93(7), 073307 (2008).

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

Chem. Phys. (1)

A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys. 384(1–3), 44–51 (2011).
[CrossRef]

J. Appl. Phys. (1)

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

J. Mater. Res. (1)

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19(07), 1924–1945 (2004).
[CrossRef]

Nano Lett. (3)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 11(2), 661–665 (2011).
[PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun 3, 770 (2012).
[CrossRef] [PubMed]

Nat. Mater. (2)

Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nat. Mater. 10(4), 296–302 (2011).
[CrossRef] [PubMed]

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

Opt. Express (7)

Photosynth. Res. (1)

T. L. Benanti and D. Venkataraman, “Organic solar cells: an overview focusing on active layer morphology,” Photosynth. Res. 87(1), 73–81 (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Other (1)

http://en.wikipedia.org/wiki/Monocrystalline_silicon

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Device geometries considered in this paper. (a) type 1, (b) type 2, (c) type 3, (d) type 4. See text for details. ω, θ, φ represents the angular frequency of incident light, polar angle and azimuthal angle, respectively. PEC = perfect-electric conductor. TE and TM polarizations are defined as shown by the directions of the electric field vectors.

Fig. 2
Fig. 2

Optimized devices for type 1 (a), 2 (b), 3(c) and 4(d). Cross-sections through the bottom scattering layers are shown below each type. Dimensions are in nm and the figures are not to scale. Absorption spectra averaged over all angles of incidence (polar angle from −90° to 90° and azimuthal angle from −23.5° to 23.5°) of the corresponding devices are in (e)-(h). Red and blue dashed lines correspond to TE and TM polarizations, respectively. The black solid lines correspond to unpolarized illumination (average of TE and TM). Absorption spectrum of the reference device with ARC is shown by purple dashed lines. Field-intensity distributions in the active layer under normal incidence for certain absorption resonant peaks are shown in (i)-(l). The field patterns labeled with XZ gives the electric field distribution in the XZ plane at Y = 0. A similar definition applies to the field patterns labeled with YZ. The J-V curves again averaged over all angles of incidence are shown in (m). Comparisons of the peak power-densities, open-circuit voltages and short-circuit current-densities for all devices are shown in (n), (o) and (p), respectively. In each figure, the reference device with ARC is denoted by red lines.

Fig. 3
Fig. 3

Comparison of the optimized device of type 1 (from Fig. 2(a)) against a reference device optimized under normal illumination. (a) Geometry of the reference device that is optimized under normal illumination. Cross-section through the bottom scattering layers is shown. (b) The current-density and peak power-density averaged over all angles of incidence as a function of voltage for the optimized device 1 (red) and reference device (blue). (c) and (d) 2D plots of peak power-density as a function of polar angle and azimuthal angle for the reference device and optimized device 1, respectively. (e) Peak power-density as a function of polar angle. (f) Peak power-density as a function of azimuthal angle. Note that for polar angle analysis in (e), we averaged the peak power-density over all azimuthal angles, while for azimuthal angle analysis in (f), we averaged the peak power-density over all polar angles.

Fig. 4
Fig. 4

(a) Impact of incident polar angle on absorption spectrum of the reference structure and the optimized structure 1. Solar photon flux as a function of wavelength is shown in the inset. The absorption spectra are taken at an azimuthal angle of 0°. (b) Field patterns for the reference device and optimized device 1 under the polar angle of 0°, 30°, and 60°, respectively. The field patterns in “XZ” column are taken in the XZ plane at Y equals zero, while the field patterns in “YZ” column are taken in the YZ plane at X equals zero. All the field patterns are calculated at zero azimuthal angle.

Tables (1)

Tables Icon

Table 1 Ranges and unit perturbations of geometric parameters for optimization

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

j ( V ) = q ( F s F c o exp ( q V k T c ) ) .
F s = ω g d ω S ( ω ) A ( ω , θ = 0 , φ = 0 ) ,
F c o = 0 2 π d ϕ 0 π / 2 d θ ω g d ω Θ ( ω ) A ( ω , θ , φ ) cos ( θ ) sin ( θ ) ,
P(V)=j(V)V.
V oc = k T c q log( F s F co ).
J sc =q( F s F co ).

Metrics