Abstract

Biomimetic nanostructures have shown to enhance the optical absorption of Ga0.5In0.5P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO2) on top of titanium dioxide (TiO2) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO2 layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
    [CrossRef]
  2. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
    [CrossRef]
  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
    [CrossRef]
  4. P. Yu, M. Y. Chiu, C. H. Chang, C. Y. Hong, Y. L. Tsai, H. V. Han, and Y. R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Wiley Online Library, Aug. 2, 2012.
  5. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
    [CrossRef] [PubMed]
  6. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
    [CrossRef] [PubMed]
  7. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta Int. J. of Opt. 29(7), 993–1009 (1982).
    [CrossRef]
  8. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  9. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
    [CrossRef] [PubMed]
  10. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
    [CrossRef] [PubMed]
  11. D. S. Kim, M. S. Park, and J. H. Jang, “Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching,” J. Vac. Sci. Technol. B 29(2), 020602 (2011).
    [CrossRef]
  12. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19(S5Suppl 5), A1155–A1164 (2011).
    [CrossRef] [PubMed]
  13. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
    [CrossRef]
  14. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  15. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
    [CrossRef] [PubMed]
  16. H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
    [CrossRef]
  17. A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
    [CrossRef] [PubMed]
  18. S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20(25), 11208–11212 (2004).
    [CrossRef] [PubMed]
  19. K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.
  20. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
    [CrossRef] [PubMed]
  21. Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
    [CrossRef]
  22. X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
    [CrossRef] [PubMed]

2013 (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

2012 (1)

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
[CrossRef] [PubMed]

2009 (2)

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

2008 (2)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

2006 (2)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

2004 (2)

A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[CrossRef] [PubMed]

S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20(25), 11208–11212 (2004).
[CrossRef] [PubMed]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta Int. J. of Opt. 29(7), 993–1009 (1982).
[CrossRef]

1962 (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Aho, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Ando, K.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Boisvert, J.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Brongersma, M. L.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Brunner, R.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Castillo, J.

A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[CrossRef] [PubMed]

Chan, C. T.

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

Chang, C. H.

Chang, F. Y.

Chang, W. L.

Chang, Y. C.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, C. C.

Chen, J. Y.

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, T. G.

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Cheng, Y. J.

Chi, G. C.

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Chi, L.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Chiu, C. H.

Chiu, M. Y.

Cotal, H.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Cui, Y.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Fan, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Fetzer, C.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Gao, L.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Garnett, E. C.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Guina, M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Hao, J.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Hebert, P.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Helgert, M.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Hicks, E. C. M.

A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[CrossRef] [PubMed]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Ho, K. M.

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

Hong, C. Y.

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, S. H.

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hu, X.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

Huang, C. K.

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hung, K. H.

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta Int. J. of Opt. 29(7), 993–1009 (1982).
[CrossRef]

Imaizumi, M.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Jang, J. H.

D. S. Kim, M. S. Park, and J. H. Jang, “Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching,” J. Vac. Sci. Technol. B 29(2), 020602 (2011).
[CrossRef]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jeong, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Karam, N.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Khan, A.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Kim, D. S.

D. S. Kim, M. S. Park, and J. H. Jang, “Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching,” J. Vac. Sci. Technol. B 29(2), 020602 (2011).
[CrossRef]

King, R.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Kinsey, G.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Kojima, N.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Kontio, J. M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Kuo, H. C.

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Leem, J. W.

Li, M.

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Lu, N.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Lu, T. C.

McGehee, M. D.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Miller, W. H.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Murray, W. A.

S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20(25), 11208–11212 (2004).
[CrossRef] [PubMed]

Niemi, T.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Ogrin, F. Y.

S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20(25), 11208–11212 (2004).
[CrossRef] [PubMed]

Ormonde, A. D.

A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[CrossRef] [PubMed]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Park, M. S.

D. S. Kim, M. S. Park, and J. H. Jang, “Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching,” J. Vac. Sci. Technol. B 29(2), 020602 (2011).
[CrossRef]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Polojärvi, V.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Qi, D.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Salmi, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Schramm, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Song, Y. M.

Spatz, J. P.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Sumita, T.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Sun, K. W.

Sundermann, M.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Takamoto, T.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Tommila, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Tsai, M. A.

Tukiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Turtiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Van Duyne, R. P.

A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[CrossRef] [PubMed]

Viheriälä, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Wang, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Wang, S. C.

Wang, Y.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Weekes, S. M.

S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20(25), 11208–11212 (2004).
[CrossRef] [PubMed]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta Int. J. of Opt. 29(7), 993–1009 (1982).
[CrossRef]

Wu, Y. R.

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Xiong, Z.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Xu, H.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

Yang, J.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Yang, T. T.

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Yoon, H.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

Yu, J. S.

Yu, P.

Yu, Z.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Zhao, F.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Zi, J.

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

Acta Physiol. Scand. (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Energy Environ. Sci. (1)

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

D. S. Kim, M. S. Park, and J. H. Jang, “Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching,” J. Vac. Sci. Technol. B 29(2), 020602 (2011).
[CrossRef]

Langmuir (2)

A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[CrossRef] [PubMed]

S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20(25), 11208–11212 (2004).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4-6), 850–852 (2009).
[CrossRef]

Nano Lett. (2)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid Silicon Nanocone-Polymer Solar Cells,” Nano Lett. 12(6), 2971–2976 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Opt. Acta Int. J. of Opt. (1)

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta Int. J. of Opt. 29(7), 993–1009 (1982).
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (1)

X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[CrossRef] [PubMed]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Other (3)

P. Yu, M. Y. Chiu, C. H. Chang, C. Y. Hong, Y. L. Tsai, H. V. Han, and Y. R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Wiley Online Library, Aug. 2, 2012.

M. Yamaguchi, N. Kojima, A. Khan, T. Takamoto, K. Ando, M. Imaizumi, and T. Sumita, “Radiation-resistant and high-efficiency InGaP/InGaAs/Ge 3-junction solar cells,” International Symposium on Compound Semiconductors, 189–190 (2003).
[CrossRef]

K. H. Hung, T. G. Chen, T. T. Yang, P. Yu, C. Y. Hong, Y. R. Wu, and G. C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proceedings of 38th IEEE Conference on Photovoltaic Specialists Conference(2012), pp.003322–003324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The effective refractive index profile of (a) a densely-packed periodic nano-cone array, and (b) a loosely-packed array with the same pitch and height as in (a), but smaller bases.

Fig. 2
Fig. 2

(a) The calculated solar-spectrum-weighted reflectance, <R> versus the filling ratio (FR) of TiO2 nanostructures arranged in a triangular lattice. Inset shows the simulated index profile of the model. (b) <R> as a function of the SiO2 thickness varying from 0 nm to 200 nm for different FRs. (c) The mapping of <R> as a function of the SiO2 thickness and filling ratio.

Fig. 3
Fig. 3

(a) Overview of polystyrene nanospheres after self-assembly. (b) densely-packed arrangement for polystyrene nanospheres with a diameter of 600 nm. (c) The cross-sectional image of the fabricated TiO2 nanostructures. Scalar bars are 1 μm in length.

Fig. 4
Fig. 4

(a) The measured and calculated reflectance spectrum of the fabricated TiO2 nanostructures on a silicon substrate. Inset shows the simulated index profile at the interface. (b) The AM1.5G-spectrum-weighted reflectance, <R> as a function of SiO2 layer thickness (red), and the experimental data with SiO2 thicknesses of 0, 100, and 200 nm (black squares). The corresponding cross-sectional views of nanostructures covered with a (c)100 nm-thick and (d) 200 nm-thick SiO2 layer. Scalar bars are 200 nm in length.

Fig. 5
Fig. 5

(a) Current-voltage characteristics for Ga0.5In0.5P/GaAs/Ge triple junction solar cells with TiO2 nanostructures and with compound SiO2/TiO2 nanostructures (b)The corresponding reflectance (R) spectra and external quantum efficiency (EQE) of the top and middle sub-cells.

Metrics