Abstract

The expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively. It is found that the grating with attached features at the bottom absorbs more energy than both the one at the top and the perfect grating. In addition, it is shown that the grating with defects in each fourth period exhibits the highest average absorptance (91%) compared with that of the grating having defects in each tenth period (89%), the grating with attached features (89%), and the perfect one (86%). Moreover, the results indicate that the absorptance spectrum of the imperfect structures is insensitive to angles of incidence. Furthermore, the absorptance enhancement is clearly demonstrated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study prove that imperfect geometries of the nanograting structure display a higher absorptance than the perfect one, and provide such a practical guideline for nanofabrication capabilities necessary to be considered by structure designers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
    [CrossRef] [PubMed]
  2. I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
    [CrossRef] [PubMed]
  3. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [CrossRef] [PubMed]
  4. J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
    [CrossRef] [PubMed]
  5. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [CrossRef]
  6. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [CrossRef]
  7. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
    [CrossRef] [PubMed]
  8. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
    [CrossRef] [PubMed]
  9. T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
    [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  11. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
    [CrossRef] [PubMed]
  12. R. L. Chern and W. T. Hong, “Nearly perfect absorption in intrinsically low-loss grating structures,” Opt. Express 19(9), 8962–8972 (2011).
    [CrossRef] [PubMed]
  13. N. Nguyen-Huu, M. Cada, and J. Pistora, “Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells,” Opt. Express 22(S1), A68–A79 (2014).
    [CrossRef]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  15. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  16. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  17. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  18. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
    [CrossRef]
  19. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
    [CrossRef] [PubMed]
  20. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [CrossRef]
  21. A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
    [CrossRef]
  22. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Transfer 130, 082404 (2008).
  23. Y.-B. Chen, J.-S. Chen, and P. F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express 17(12), 9789–9803 (2009).
    [CrossRef] [PubMed]
  24. K. Watanabe, J. Pištora, and Y. Nakatake, “Rigorous coupled-wave analysis of electromagnetic scattering from lamellar grating with defects,” Opt. Express 19(25), 25799–25811 (2011).
    [CrossRef] [PubMed]
  25. I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).
  26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  27. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  28. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [CrossRef]
  29. N. Nguyen-Huu, Y.-L. Lo, Y.-B. Chen, and T.-Y. Yang, “Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme,” Appl. Opt. 50(4), 415–426 (2011).
    [CrossRef] [PubMed]
  30. COMSOL, “RF Module Unser's Guide” (2011), http://www.comsol.com .
  31. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mat. Sol. Cells 92(11), 1305–1310 (2008).
    [CrossRef]
  32. American Society for Testing and Materials, “ASTM G173-03 reference spectra” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  33. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
    [CrossRef]
  34. R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [CrossRef]
  35. T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
    [CrossRef]
  36. C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
    [CrossRef] [PubMed]
  37. Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
    [CrossRef] [PubMed]
  38. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
    [CrossRef]

2014 (1)

2013 (2)

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[CrossRef] [PubMed]

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

2012 (3)

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
[CrossRef] [PubMed]

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (2)

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (3)

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[CrossRef] [PubMed]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Transfer 130, 082404 (2008).

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mat. Sol. Cells 92(11), 1305–1310 (2008).
[CrossRef]

2007 (2)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

2005 (1)

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

2003 (3)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

2000 (1)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

1999 (2)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1996 (2)

1995 (1)

1981 (1)

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

1902 (1)

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Adams, J.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Agrawal, M.

Andrewartha, J.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Asano, T.

Barbara, A.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Barnett, A.

Botten, I.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Bustarret, E.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Cabarrocas, P. R. I.

Cada, M.

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Chaminda, M.

Chen, C.

Chen, C. D.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Chen, C.-H.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Chen, J.-S.

Chen, K.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Chen, Y.-B.

Chern, R. L.

Colin, C.

Collin, S.

Craig, M.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Creazzo, T.

Dewan, R.

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Fu, L.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Gates, B. D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Gippius, N. A.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Granet, G.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Grann, E. B.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mat. Sol. Cells 92(11), 1305–1310 (2008).
[CrossRef]

Guo, L. J.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[CrossRef]

Hong, A. J.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Hong, W. T.

Honsberg, C.

Hsu, P. F.

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Kim, J.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Knipp, D.

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[CrossRef]

Lalanne, P.

Lee, B. J.

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Transfer 130, 082404 (2008).

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, L.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Lo, Y.-L.

Lopez-Rios, T.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Ma, K. J.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Mallick, S. B.

Marinkovic, M.

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Massiot, I.

McPhedran, R.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Mochizuki, K.

Moharam, M. G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Morris, G. M.

Mutitu, J. G.

Nah, J.-W.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Nakatake, Y.

Nevière, M.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Nguyen-Huu, N.

Noda, S.

Noriega, R.

Norris, D. J.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Ok, J. G.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pelouard, J.-L.

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Peumans, P.

Phadke, S.

Pina-Hernandez, C.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Pistora, J.

Pištora, J.

Pommet, D. A.

Popov, E.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Prather, D. W.

Quémerais, P.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Ross, F. M.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Ryan, D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Sadana, D. K.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Salleo, A.

Sauvan, C.

Schweizer, H.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Shi, S.

Shin, B.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Shin, Y. J.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Stein, A.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Stewart, M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Sung, C.-K.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Taubert, R.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Tseng, A. A.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Watanabe, K.

Weiss, T.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Whitesides, G. M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Willson, C. G.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wood, R.

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Wu, C.-L.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Wu, Y.-K.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Xu, Q.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Yamaguchi, M.

Yang, T.-Y.

Yao, P.-H.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[CrossRef]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Zhang, Z. M.

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Transfer 130, 082404 (2008).

ACS Nano (1)

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Chem. Rev. (1)

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

IEEE Trans. Electron. Packag. Manuf. (1)

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

J. Heat Transfer (1)

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Transfer 130, 082404 (2008).

J. Mod. Opt. (1)

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

J. Opt. Soc. Am. A (3)

Nano Lett. (1)

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Nanotechnology (2)

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (10)

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[CrossRef] [PubMed]

Y.-B. Chen, J.-S. Chen, and P. F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express 17(12), 9789–9803 (2009).
[CrossRef] [PubMed]

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[CrossRef] [PubMed]

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

R. L. Chern and W. T. Hong, “Nearly perfect absorption in intrinsically low-loss grating structures,” Opt. Express 19(9), 8962–8972 (2011).
[CrossRef] [PubMed]

K. Watanabe, J. Pištora, and Y. Nakatake, “Rigorous coupled-wave analysis of electromagnetic scattering from lamellar grating with defects,” Opt. Express 19(25), 25799–25811 (2011).
[CrossRef] [PubMed]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
[CrossRef] [PubMed]

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[CrossRef] [PubMed]

N. Nguyen-Huu, M. Cada, and J. Pistora, “Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells,” Opt. Express 22(S1), A68–A79 (2014).
[CrossRef]

Philos. Mag. (1)

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Photonics Nanostruct. (1)

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photonics Nanostruct. 9(4), 390–397 (2011).
[CrossRef]

Phys. Rev. B (2)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66(16), 161403 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[CrossRef]

Sol. Energy Mat. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mat. Sol. Cells 92(11), 1305–1310 (2008).
[CrossRef]

Other (2)

American Society for Testing and Materials, “ASTM G173-03 reference spectra” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .

COMSOL, “RF Module Unser's Guide” (2011), http://www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic diagram of the grating structure of which geometry is defined by the grating period Λ, the grating thickness d, and the filling factor f. The transverse magnetic wave (H) (parallel to the grating grooves or y-axis) is incident on the grating with a wavevector k and an incident angle θ; (b) Optical constants of the Si material used in this study include the extinction index κ and the refractive index n [31]

Fig. 2
Fig. 2

a) Absorptance spectra of SWG Si grating and plain Si for TM waves at normal incidence and b) Contour plot of the absorptance as a function of the wavelength and angle of incidence for TM waves.

Fig. 3
Fig. 3

Schematic illustration of imperfect gratings with the grating period Λ = 130 nm, the grating thickness d = 90 nm, the filling factor f = 0.5, and the square feature size h = 10 nm. The coordinate system used is the same as that in Fig. 1.

Fig. 4
Fig. 4

a) Absorptance spectra of SWG structures at normal incidence and b) Absorptance peaks of the perfect absorber with different angles of incidence calculated using the RCWA and the FEM-based COMSOL Multiphysics.

Fig. 5
Fig. 5

Near-field patterns of the SWG structures at normal incidence including the optimized grating, GII, and GIV at peaks A (at λ = 405 nm), AII (at λ = 410 nm), and AIV (at λ = 380 nm). Note that the top of Fig. 5 represents magnetic field distributions, and the bottom of Fig. 5 shows energy density and the Poynting vector in one period.

Fig. 6
Fig. 6

Near-field patterns of the SWG structures at normal incidence including the optimized grating, GII, and GIV at dips B (at λ = 440 nm), BII (at λ = 450 nm), and BIV (at λ = 430 nm). Note that the top of Fig. 6 represents magnetic field distributions, and the bottom of Fig. 6 shows energy density and the Poynting vector in one period.

Fig. 7
Fig. 7

Near-field patterns of the SWG structures at normal incidence including the optimized grating, GII, and GIV at peaks C, CII, and CIV at the same wavelength of λ = 530 nm. Note that the top of Fig. 7 represents magnetic field distributions, and the bottom of Fig. 7 shows energy density and the Poynting vector in one period.

Fig. 8
Fig. 8

Schematic illustration of imperfect gratings with periodic defects within a*Λ periods. Note that geometry parameters are the same as the ones for the optimized grating including the grating period Λ = 130 nm, the grating thickness d = 90 nm, and the filling factor f = 0.5; the coordinate system is the same as that in Fig. 1; and the constant a is the number of the grating periods considered in the simulation defined as a = 4 and 10.

Fig. 9
Fig. 9

Absorptance spectra of imperfectly periodic structures at TM normal incidence: a) in the fourth periods and b) in the tenth periods. Absorptance spectra at zero order diffraction are also calculated for comparison between the fourth and the tenth periods with one period using the RCWA.

Fig. 10
Fig. 10

Near-field patterns of GVII with defects at normal incidence in the fourth periods at peaks A4VI and C4VII and the tenth periods at peaks A10VI and C10VII at wavelengths of 400 nm and 600 nm, respectively. Note that the top of Fig. 10 represents magnetic field distributions, and the bottom of Fig. 10 shows energy density and Poynting vectors.

Fig. 11
Fig. 11

Contour plots of the absorptance as a function of the wavelength and angle of incidence for TM waves of imperfect structures exhibiting efficient performance: a) GIV and b) GVII with periodic defects in the fourth periods.

Metrics