Abstract

Laser ablated shock waves from compacted metal nanoenergetic powders of Aluminum (Al), Nickel coated Aluminum (Ni-Al) was characterized using shadowgraphy technique and compared with that from Boron Potassium Nitrate (BKN), Ammonium Perchlorate (AP) and Potassium Bromide (KBr) powders. Ablation is created by focused second harmonic (532 nm, 7 ns) of Nd:YAG laser. Time resolved shadowgraphs of propagating shock front and contact front revealed dynamics and the precise time of energy release of materials under extreme ablative pressures. Among the different compacted materials studied, Al nanopowders have maximum shock velocity and pressure behind the shock front compared to others.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech. 31(4), 311–317 (2006).
    [CrossRef]
  2. Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
    [CrossRef]
  3. M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C 111(28), 10278–10284 (2007).
    [CrossRef]
  4. D. E. Eakins and N. N. Thadhani, “The shock-densifiction behavior of three distinct Ni+Al powder mixtures,” Appl. Phys. Lett. 92(11), 111903 (2008).
    [CrossRef]
  5. S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
    [CrossRef]
  6. N. K. Bourne, “Akrology: materials: physics in extremes,” AIP Conf. Proc. 1426, 1331–1334 (2012).
  7. N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci. 44(13), 3319–3343 (2009).
    [CrossRef]
  8. A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
    [CrossRef]
  9. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
    [CrossRef] [PubMed]
  10. D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett. 92(8), 081504 (2008).
    [CrossRef]
  11. J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
    [CrossRef]
  12. C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
    [CrossRef]
  13. S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
    [CrossRef]
  14. S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
    [CrossRef]
  15. Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
    [CrossRef]
  16. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (CRC, 1993).
  17. S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci. 127–129, 1029–1034 (1998).
    [CrossRef]
  18. Ya. B. Zel′dovich and Yu. P. Raizer, Physics of Shockwaves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).
  19. P. Verma and R. V. Singh, HEMRL (Personal communication, 2012).
  20. N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [CrossRef] [PubMed]
  21. H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys. 26(6), 766–775 (1955).
    [CrossRef]
  22. R. A. Freeman, “Variable-energy blast waves,” J. Phys. D Appl. Phys. 1(12), 1697–1710 (1968).
    [CrossRef]
  23. X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
    [CrossRef]
  24. B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
    [CrossRef]
  25. C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D Appl. Phys. 42(15), 155503 (2009).
    [CrossRef]
  26. D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
    [CrossRef] [PubMed]
  27. S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
    [CrossRef]
  28. S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
    [CrossRef]

2013

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

2012

N. K. Bourne, “Akrology: materials: physics in extremes,” AIP Conf. Proc. 1426, 1331–1334 (2012).

2011

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

2010

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
[CrossRef]

2009

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[CrossRef]

N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci. 44(13), 3319–3343 (2009).
[CrossRef]

C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D Appl. Phys. 42(15), 155503 (2009).
[CrossRef]

2008

D. E. Eakins and N. N. Thadhani, “The shock-densifiction behavior of three distinct Ni+Al powder mixtures,” Appl. Phys. Lett. 92(11), 111903 (2008).
[CrossRef]

D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett. 92(8), 081504 (2008).
[CrossRef]

2007

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C 111(28), 10278–10284 (2007).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

2006

A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech. 31(4), 311–317 (2006).
[CrossRef]

2005

A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
[CrossRef]

2003

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

2002

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

1998

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci. 127–129, 1029–1034 (1998).
[CrossRef]

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
[CrossRef]

1968

R. A. Freeman, “Variable-energy blast waves,” J. Phys. D Appl. Phys. 1(12), 1697–1710 (1968).
[CrossRef]

1955

H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys. 26(6), 766–775 (1955).
[CrossRef]

Ali, A. N.

A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
[CrossRef]

Aly, Y.

S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
[CrossRef]

Arakawa, Y.

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

Asay, B. W.

A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
[CrossRef]

Ayyub, P.

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Bagchi, S.

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Batani, D.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Bhuyan, M. K.

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Bian, B. M.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

Birkan, M.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Bohn, W.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Bose, S.

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Bourne, N. K.

N. K. Bourne, “Akrology: materials: physics in extremes,” AIP Conf. Proc. 1426, 1331–1334 (2012).

N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci. 44(13), 3319–3343 (2009).
[CrossRef]

Brode, H. L.

H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys. 26(6), 766–775 (1955).
[CrossRef]

Bunker, C. E.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Chen, X.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

Conner, R. W.

M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C 111(28), 10278–10284 (2007).
[CrossRef]

Desai, T.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Dlott, D. D.

M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C 111(28), 10278–10284 (2007).
[CrossRef]

Dreizin, E. L.

S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
[CrossRef]

Eakins, D. E.

D. E. Eakins and N. N. Thadhani, “The shock-densifiction behavior of three distinct Ni+Al powder mixtures,” Appl. Phys. Lett. 92(11), 111903 (2008).
[CrossRef]

Eckel, H. A.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Freeman, R. A.

R. A. Freeman, “Variable-energy blast waves,” J. Phys. D Appl. Phys. 1(12), 1697–1710 (1968).
[CrossRef]

Gonzalez, J.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

Gord, J. R.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Gray, G. T.

N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci. 44(13), 3319–3343 (2009).
[CrossRef]

Greif, R.

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci. 127–129, 1029–1034 (1998).
[CrossRef]

Gromov, A. A.

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

Horisawa, H.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Jeong, S. H.

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci. 127–129, 1029–1034 (1998).
[CrossRef]

Jiang, N.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Juha, L.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Kadlec, Ch.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Kiran, P. P.

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Komurasaki, K.

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

Kralikova, B.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Krasik, Y. E.

D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett. 92(8), 081504 (2008).
[CrossRef]

Krishnamurthy, M.

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Krousky, E.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Kulatilaka, W. D.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Kumar, G. R.

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Kumar, V. R.

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

Kuo, K. K.

A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech. 31(4), 311–317 (2006).
[CrossRef]

Kwon, Y. S.

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

Leela, Ch.

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

Lippert, T.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Liu, H.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

Lu, J.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

Lucchini, G.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Mao, S. S.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

Mao, X.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

Meyer, T. R.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Michaelis, M.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Millett, J. C. F.

N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci. 44(13), 3319–3343 (2009).
[CrossRef]

Mocek, T.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Ni, X. W.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

Nishimura, H.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Ochi, Y.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Pacini, G.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
[CrossRef]

Pfeifer, M.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Phipps, C.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Phipps, C. R.

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[CrossRef]

Pini, R.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
[CrossRef]

Porneala, C.

C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D Appl. Phys. 42(15), 155503 (2009).
[CrossRef]

Präg, A.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Rao, A. M.

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

Ravasio, A.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Rezunkov, Y.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Risha, G. A.

A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech. 31(4), 311–317 (2006).
[CrossRef]

Roy, S.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci. 127–129, 1029–1034 (1998).
[CrossRef]

Salimbeni, R.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
[CrossRef]

Sander, R. K.

A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
[CrossRef]

Sasoh, A.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Schall, W.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Scharring, S.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Schmidt, J. B.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Schoenitz, M.

S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
[CrossRef]

Shen, Z. H.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

Shimamura, K.

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

Siano, S.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
[CrossRef]

Sinko, J.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

Sinko, J. E.

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[CrossRef]

Skala, J.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Son, S. F.

A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
[CrossRef]

Stabile, H.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Stauffer, H. U.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

Strati, F.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Strokova, J. I.

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

Tewari, S. P.

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

Thadhani, N. N.

D. E. Eakins and N. N. Thadhani, “The shock-densifiction behavior of three distinct Ni+Al powder mixtures,” Appl. Phys. Lett. 92(11), 111903 (2008).
[CrossRef]

Ulas, A.

A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech. 31(4), 311–317 (2006).
[CrossRef]

Ullschmied, J.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Vekselman, V.

D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett. 92(8), 081504 (2008).
[CrossRef]

Vummidi, S. L.

S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
[CrossRef]

Wang, B.

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

Wang, M. W.

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Wang, X. L.

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Willis, D. A.

C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D Appl. Phys. 42(15), 155503 (2009).
[CrossRef]

Yamaguchi, T.

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

Yang, J. J.

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Yang, K.

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

Yarmolich, D.

D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett. 92(8), 081504 (2008).
[CrossRef]

Zamkov, M. A.

M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C 111(28), 10278–10284 (2007).
[CrossRef]

Zhang, N.

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zhu, X. N.

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

AIP Conf. Proc.

N. K. Bourne, “Akrology: materials: physics in extremes,” AIP Conf. Proc. 1426, 1331–1334 (2012).

Appl. Phys. Lett.

D. E. Eakins and N. N. Thadhani, “The shock-densifiction behavior of three distinct Ni+Al powder mixtures,” Appl. Phys. Lett. 92(11), 111903 (2008).
[CrossRef]

D. Yarmolich, V. Vekselman, and Y. E. Krasik, “A concept of ferroelectric microparticle propulsion thruster,” Appl. Phys. Lett. 92(8), 081504 (2008).
[CrossRef]

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[CrossRef]

S. Bagchi, P. P. Kiran, M. K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, and G. R. Kumar, “Hot ion generation from nanostructured surfaces under intense femtosecond irradiation,” Appl. Phys. Lett. 90(14), 141502 (2007).
[CrossRef]

Appl. Surf. Sci.

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from Excimer laser heating of Aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci. 127–129, 1029–1034 (1998).
[CrossRef]

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of Aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

J. Appl. Phys.

S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, “Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles,” J. Appl. Phys. 113(18), 184310 (2013).
[CrossRef]

A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of the gas phase role to the prediction of energetic material behavior: an experimental study,” J. Appl. Phys. 97(6), 063505 (2005).
[CrossRef]

B. Wang, K. Komurasaki, T. Yamaguchi, K. Shimamura, and Y. Arakawa, “Energy conversion on a glass-laser-induced blast wave in air,” J. Appl. Phys. 108(12), 124911 (2010).
[CrossRef]

H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys. 26(6), 766–775 (1955).
[CrossRef]

J. Mater. Sci.

N. K. Bourne, J. C. F. Millett, and G. T. Gray, “On the shock compression of polycrystalline metals,” J. Mater. Sci. 44(13), 3319–3343 (2009).
[CrossRef]

J. Phys. Chem. C

M. A. Zamkov, R. W. Conner, and D. D. Dlott, “Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: Aluminum nanoparticles in teflon,” J. Phys. Chem. C 111(28), 10278–10284 (2007).
[CrossRef]

J. Phys. D Appl. Phys.

R. A. Freeman, “Variable-energy blast waves,” J. Phys. D Appl. Phys. 1(12), 1697–1710 (1968).
[CrossRef]

C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D Appl. Phys. 42(15), 155503 (2009).
[CrossRef]

J. Propul. Power

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: laser-ablation propulsion,” J. Propul. Power 26(4), 609–637 (2010).
[CrossRef]

S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characerization of fine Nickel-coated Aluminum powder as potential fuel additive,” J. Propul. Power 26(3), 454–460 (2010).
[CrossRef]

Laser Particle Beams

Ch. Leela, S. Bagchi, V. R. Kumar, S. P. Tewari, and P. P. Kiran, “Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air,” Laser Particle Beams 31(02), 263–272 (2013).
[CrossRef]

Microw. Opt. Technol. Lett.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microw. Opt. Technol. Lett. 38(1), 75–79 (2003).
[CrossRef]

Opt. Commun.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154(5–6), 319–324 (1998).
[CrossRef]

Phys. Plasmas

S. Bagchi, P. P. Kiran, K. Yang, A. M. Rao, M. K. Bhuyan, M. Krishnamurthy, and G. R. Kumar, “Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes,” Phys. Plasmas 18(1), 014502 (2011).
[CrossRef]

Phys. Rev. E Stat. Nonlinear Soft Matter Phys.

D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, “Ablation pressure scaling at short laser wavelength,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6), 067403 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

N. Zhang, X. N. Zhu, J. J. Yang, X. L. Wang, and M. W. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Propellants Explosives Pyrotech.

A. Ulas, G. A. Risha, and K. K. Kuo, “An investigation of the performance of a Boron/Potassium nitrate based pyrotechnic igniter,” Propellants Explosives Pyrotech. 31(4), 311–317 (2006).
[CrossRef]

Talanta

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta 57(3), 425–451 (2002).
[CrossRef] [PubMed]

Other

L. I. Sedov, Similarity and Dimensional Methods in Mechanics (CRC, 1993).

Ya. B. Zel′dovich and Yu. P. Raizer, Physics of Shockwaves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

P. Verma and R. V. Singh, HEMRL (Personal communication, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental schematic of shadowgraphy, (b) synchronization of ICCD camera with the laser pulse, SEM images of compacted (c) Al and (d) Ni-Al nanopowders.

Fig. 2
Fig. 2

Shadowgraphs showing shock front (SF) and contact front (CF) of Aluminum (Al) at a time delay of (a) 0.8 μs (b) 2 μs (c) 3.6 μs (d) 5.6 μs (e) 7.6 μs and (f) 11.2 μs at 75 mJ input laser energy.

Fig. 3
Fig. 3

Shadowgraphs showing Shock Front (SF) and Contact Front (CF) at 7.6 µs delay from the laser pulse for (a) Aluminum (Al) (b) Nickel coated Aluminum (Ni-Al) (c) Boron Potassium Nitrate (BKN) (d) Ammonium perchlorate (AP) (e) potassium Bromide (KBr) and (f) Radius of curvature of shock front (SF) (RSW) at 75 mJ input laser energy. Lines are fit to the data using the CPC-PSET model for the hemispherical shockwave evolution from the targets.

Fig. 4
Fig. 4

Evolution of radius of contact front (RCF) from compacted nanpowders at 75 mJ of incident laser energy. Lines are guide to the eye.

Fig. 5
Fig. 5

(a) Velocity (VSW) and (b) Pressure (PSW) behind the shock front (SF) for the compacted materials. Lines are guide to the eye. The horizontal lines in the figures (a) and (b) represent the speed sound and pressure of ambient atmospheric air, respectively.

Tables (1)

Tables Icon

Table 1 Isp values for different compacted nanopowders at 0.4 µs delay from the laser pulse

Metrics