Abstract

We propose a polymer photovoltaic device with a new scattering mechanism based on photon absorption and re-emission in a quantum dot layer. A matrix of aluminum nanorods with optimized radius and period are used to modify the coupling of light emitted from the quantum dots into the polymer layer. Our analysis shows that this architecture is capable of increasing the absorption of an ordinary polymer photovoltaic device by 28%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004).
    [CrossRef]
  2. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442 (2009).
    [CrossRef]
  3. F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale 2(6), 873–886 (2010).
    [CrossRef] [PubMed]
  4. A. J. Medford, M. R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, and F. C. Krebs, “Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality,” Opt. Express 18(S3Suppl 3), A272–A285 (2010).
    [CrossRef] [PubMed]
  5. H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
    [CrossRef] [PubMed]
  6. J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
    [CrossRef]
  7. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
    [CrossRef]
  8. O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
    [CrossRef]
  9. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
    [CrossRef] [PubMed]
  10. W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
    [CrossRef] [PubMed]
  11. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
    [CrossRef] [PubMed]
  12. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering. Wiley, 2003.
  13. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295(5564), 2425–2427 (2002).
    [CrossRef] [PubMed]
  14. L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express 20(S5Suppl 5), A606–A621 (2012).
    [CrossRef] [PubMed]
  15. W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express 20(3), 2572–2580 (2012).
    [CrossRef] [PubMed]
  16. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1Suppl 1), A60–A76 (2013).
    [CrossRef] [PubMed]
  17. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  18. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5Suppl 5), A729–A739 (2012).
    [CrossRef] [PubMed]
  19. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
    [CrossRef]
  20. E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
    [CrossRef]
  21. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
    [CrossRef] [PubMed]
  22. Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
    [CrossRef] [PubMed]
  23. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
    [CrossRef] [PubMed]
  24. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  25. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  26. B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
    [CrossRef]
  27. A. J. Nozik, “Quantum dot solar cells,” Physica E 14, 115–120(2002).
  28. Y.-J. Lee, Y.-C. Yao, M.-T. Tsai, A.-F. Liu, M.-D. Yang, and J.-T. Lai, “Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells,” Opt. Express 21(S6), A953–A963 (2013).
    [CrossRef]
  29. C. Cheng and X. Wang, “A Comparative Study of Spectral Characteristics of CdSe and CdSe/ZnS Quantum Dots” International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006. Metamaterials, 366–369 (2006).
    [CrossRef]
  30. The experimental absorption data (A.U.) was obtained from solution and has been converted into absorption (%) using typical k values for bulk.
  31. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]

2013

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[CrossRef]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1Suppl 1), A60–A76 (2013).
[CrossRef] [PubMed]

Y.-J. Lee, Y.-C. Yao, M.-T. Tsai, A.-F. Liu, M.-D. Yang, and J.-T. Lai, “Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells,” Opt. Express 21(S6), A953–A963 (2013).
[CrossRef]

2012

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express 20(3), 2572–2580 (2012).
[CrossRef] [PubMed]

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[CrossRef] [PubMed]

L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express 20(S5Suppl 5), A606–A621 (2012).
[CrossRef] [PubMed]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5Suppl 5), A729–A739 (2012).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

2011

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

2010

A. J. Medford, M. R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, and F. C. Krebs, “Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality,” Opt. Express 18(S3Suppl 3), A272–A285 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale 2(6), 873–886 (2010).
[CrossRef] [PubMed]

2009

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442 (2009).
[CrossRef]

2008

O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
[CrossRef]

2004

C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004).
[CrossRef]

2002

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

A. J. Nozik, “Quantum dot solar cells,” Physica E 14, 115–120(2002).

Aarø, D.

Abass, A.

Abdelaziz, A.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Alivisatos, A. P.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Alstrup, J.

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442 (2009).
[CrossRef]

Alù, A.

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Bazan, G. C.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Bienstman, P.

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Bjerring, M.

O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
[CrossRef]

Brabec, C. J.

C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004).
[CrossRef]

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

Chaudhary, S.

Chen, C.-C.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Chew, W. C.

Chou, S. Y.

Choy, W. C. H.

Collins, S. D.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Ding, W.

Dittmer, J. J.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Dou, L.

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Emery, K.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Furlan, A.

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

Fyenbo, J.

Gan, Q.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Gao, J.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Gevorgyan, S. A.

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442 (2009).
[CrossRef]

Goodman, S.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Hagemann, O.

O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
[CrossRef]

He, Y.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Heeger, A. J.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Hendriks, K. H.

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

Ho, K.-M.

Hong, Z.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

Huynh, W. U.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Janssen, R. A. J.

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

Jeong, D. S.

Jørgensen, M.

Kafafi, Z. H.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Kato, T.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Kim, I.

Krebs, F. C.

F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale 2(6), 873–886 (2010).
[CrossRef] [PubMed]

A. J. Medford, M. R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, and F. C. Krebs, “Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality,” Opt. Express 18(S3Suppl 3), A272–A285 (2010).
[CrossRef] [PubMed]

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442 (2009).
[CrossRef]

O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
[CrossRef]

Kuang, P.

Kymakis, E.

E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[CrossRef]

Lai, J.-T.

Le, K. Q.

Lee, K.-S.

Lee, T. S.

Lee, W. S.

Lee, Y.-J.

Li, G.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Li, W.

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

Lilliedal, M. R.

Liu, A.-F.

Luo, C.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Maes, B.

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Medford, A. J.

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

Moriarty, T.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Murase, S.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Nguyen, T.-Q.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Nielsen, N. C.

O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
[CrossRef]

Nozik, A. J.

A. J. Nozik, “Quantum dot solar cells,” Physica E 14, 115–120(2002).

O’Carroll, D. M.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Ohya, K.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Pakalski, H.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Seifter, J.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Sha, W. E. I.

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Song, L.

Stratakis, E.

E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[CrossRef]

Tromholt, T.

F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale 2(6), 873–886 (2010).
[CrossRef] [PubMed]

Tsai, M.-T.

Uddin, A.

Wienk, M. M.

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

Wu, Y.

Xu, R.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Yang, J.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Yang, M.-D.

Yang, Y.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Yao, Y.-C.

Ye, S.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Ye, Z.

Yoshimura, K.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

You, J.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Yu, B.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Zhang, Y.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Zhou, H.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

Adv. Mater.

H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment,” Adv. Mater. 25(11), 1646–1652 (2013).
[CrossRef] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[CrossRef] [PubMed]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

J. Am. Chem. Soc.

W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells,” J. Am. Chem. Soc. 135(15), 5529–5532 (2013).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

J. Mater. Chem.

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442 (2009).
[CrossRef]

Mater. Today

E. Stratakis and E. Kymakis, “Nanoparticle-based plasmonic organic photovoltaic devices,” Mater. Today 16(4), 133–146 (2013).
[CrossRef]

Nano Lett.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Nanoscale

F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale 2(6), 873–886 (2010).
[CrossRef] [PubMed]

Nat Commun.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat Commun. 4, 1446 (2013).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[CrossRef]

Opt. Express

A. J. Medford, M. R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, and F. C. Krebs, “Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality,” Opt. Express 18(S3Suppl 3), A272–A285 (2010).
[CrossRef] [PubMed]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express 20(3), 2572–2580 (2012).
[CrossRef] [PubMed]

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[CrossRef] [PubMed]

L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express 20(S5Suppl 5), A606–A621 (2012).
[CrossRef] [PubMed]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5Suppl 5), A729–A739 (2012).
[CrossRef] [PubMed]

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1Suppl 1), A60–A76 (2013).
[CrossRef] [PubMed]

Y.-J. Lee, Y.-C. Yao, M.-T. Tsai, A.-F. Liu, M.-D. Yang, and J.-T. Lai, “Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells,” Opt. Express 21(S6), A953–A963 (2013).
[CrossRef]

Physica E

A. J. Nozik, “Quantum dot solar cells,” Physica E 14, 115–120(2002).

Prog. Polym. Sci.

J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “Recent trends in polymer tandem solar cell research,” Prog. Polym. Sci. 38(12), 1909–1928 (2013).
[CrossRef]

Science

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004).
[CrossRef]

O. Hagemann, M. Bjerring, N. C. Nielsen, and F. C. Krebs, “All solution processed tandem polymer solar cells based on thermocleavable materials,” Sol. Energy Mater. Sol. Cells 92(11), 1327–1335 (2008).
[CrossRef]

Other

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering. Wiley, 2003.

C. Cheng and X. Wang, “A Comparative Study of Spectral Characteristics of CdSe and CdSe/ZnS Quantum Dots” International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006. Metamaterials, 366–369 (2006).
[CrossRef]

The experimental absorption data (A.U.) was obtained from solution and has been converted into absorption (%) using typical k values for bulk.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the polymer cell and simulation procedure. Light is incident from the glass, and useful absorption during the first path (P1) occurs in both the polymer (P3HT:PCBM) and within the QD layer. The QDs will emit photons with a particular probability resulting in a second path (P2) through the cell, which can be absorbed in the polymer.

Fig. 2
Fig. 2

The (a) real and (b) imaginary parts of the refractive index of the quantum dots used in our model. (c) Comparison of absorption spectrum of the quantum dots in the model (blue) to the experimental data (red) shows good agreement.

Fig. 3
Fig. 3

(a) Schematic diagram of the aluminum nanorod layer filled with uniformly distributed quantum dots (orange) and (b) cross section of the entire solar cell structure. The orange dotted box in (a) is the simulated unit volume, which contains 1080 dipoles.

Fig. 4
Fig. 4

The number of photons absorbed in (a) the polymer, (b) the QD layer, and (c) the aluminum nanorods during the first path. (d) The coupling efficiency of the emitted photons from the QDs to the polymer layer.

Fig. 5
Fig. 5

Total number of photons absorbed in the polymer for different radii and periods of the nanorod array (including the absorption from the emission of QDs). The radii are 30 nm (purple), 50 nm (blue), 70 nm (green), 90 nm (red).

Fig. 6
Fig. 6

Absorption comparison during the first path for the traditional polymer cell and the QD enhanced polymer cell. (a) Cross section showing the number of absorbed photons per cubic meter with (green solid line) and without (blue solid line) the QD layer. (b) The absorption in each layer of the ordinary polymer cell. (c) The absorption in each layer of our QD enhanced polymer cell. The absorption in the QDs occurring for λ>600 nm will not contribute to the re-emission process because they do not contain sufficient energy to cause emission.

Fig. 7
Fig. 7

The comparison of absorption spectra of the polymer (blue) and the QD enhanced polymer (Green: without QD emission, Red: with 50% QD emission, Black: with 100% QD emission) cells without the nanorod array. (a) The absorbed number of photons as a function of wavelength under AM 1.5G solar illumination. (b) The percentage of photons absorbed compared to the incident solar illumination. Note: the peak at ~560 nm results from the absorption of photons emitted from the QDs and could in principle exceed 100% due to the redistribution of higher energy photons. The radius and period of the nanorods are 30 nm and 260 nm, respectively.

Fig. 8
Fig. 8

Electrical field intensity of fundamental (a) TE and (b) TM modes in the solar cell. Orange and gray lines are the field intensities for structures with and without quantum dots, respectively. The layers are depicted on the background: glass (blue), ITO (light blue), polymer (red), QDs (yellow), and aluminum (gray); note: for the structure without QDs, the yellow layer is aluminum. The analysis is performed at the emission peak of QDs (i.e. 559 nm).

Fig. 9
Fig. 9

The coupling of dipole emission into the waveguide mode of the solar cell. Blue data are fundamental (a) TE and (b) TM modes, and red data are the field intensities resulting from dipole emission. The layers are depicted on the background: glass (blue), ITO (light blue), polymer (red), QDs (yellow) and aluminum (gray).

Fig. 10
Fig. 10

The number of absorbed photons is influenced by the thickness of the polymer layer. The structure with quantum dots outperforms the structure without quantum dots for polymer thicknesses below 80 nm. For thicker films, there is a tradeoff between carrier collection and thin-film interference effects.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N t o t = s o l a r s p e c t r u m N p o l y ( λ ) d λ + e m i s s i o n s p e c t r u m { D ( λ ) A 2 n d ( λ ) [ s o l a r s p e c t r u m N Q D s ( λ ) d λ ] } d λ .

Metrics