Abstract

A two-step optimization method is proposed to design a compact single-surface far-field illumination system, satisfying the requirements of illuminance uniformity and light control efficiency with h/D less than 3:1. In the first step, the conventional tailored edge-ray design (TED) method is employed to generate prescribed illumination distribution for the rotationally symmetric optical system, and an optimization process is added to reach a balance between illuminance uniformity and light control efficiency. Based on the improved TED method, we can construct an initial optical system more accurate than that obtained by point source assumption. In the second step, an iterative feedback modification process is employed to optimize the initial optical system, so that the degradation of performance due to insufficient control of skew rays is mitigated. Because the initial optical system constructed in the first step is accurate enough, the second-step feedback modification can converge to a satisfactory result within several iterations. As an example, a free-form rotationally symmetric lens with the height of h = 25 mm is designed for a discoidal LED source with the diameter of D = 10 mm. Both high illuminance uniformity of 0.75 and high light control efficiency of 0.86 are obtained simultaneously. The method can be further used to achieve more complex non-uniform illumination distributions. The design of an optical system with h/D = 2.5:1 and a circular linear illumination distribution is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3(2), 160–175 (2007).
    [CrossRef]
  2. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
    [CrossRef]
  3. R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.
  4. W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 154 (1998).
    [CrossRef]
  5. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
    [CrossRef] [PubMed]
  6. V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE 5942, 594207 (2005).
    [CrossRef]
  7. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007).
    [CrossRef] [PubMed]
  8. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [CrossRef] [PubMed]
  9. K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
    [CrossRef]
  10. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [CrossRef] [PubMed]
  11. O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
    [CrossRef]
  12. Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp
  13. P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [CrossRef]
  14. O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
    [CrossRef]
  15. K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013).
    [CrossRef] [PubMed]
  16. H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994).
    [CrossRef]
  17. A. Rabl and J. M. Gordon, “Reflector design for illumination with extended sources: the basic solutions,” Appl. Opt. 33(25), 6012–6021 (1994).
    [CrossRef] [PubMed]
  18. P. T. Ong, J. M. Gordon, and A. Rabl, “Tailored edge-ray designs for illumination with tubular sources,” Appl. Opt. 35(22), 4361–4371 (1996).
    [CrossRef] [PubMed]
  19. J. M. Gordon and A. Rabl, “Reflectors for uniform far-field irradiance: fundamental limits and example of an axisymmetric solution,” Appl. Opt. 37(1), 44–47 (1998).
    [CrossRef] [PubMed]
  20. P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
    [CrossRef]
  21. R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005).
    [CrossRef] [PubMed]
  22. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
    [CrossRef]
  23. W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
    [CrossRef]
  24. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010).
    [CrossRef] [PubMed]
  25. W. J. Cassarly, “Iterative reflector design using a cumulative flux compensation approach,” Proc. SPIE 7652, 76522L (2010).
    [CrossRef]
  26. CIE (Commission Internationale de L’Eclairage), Lighting of Work Places Part 1: Indoor (CIE publication 008, Vienna, 2001).
  27. J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

2013 (2)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013).
[CrossRef] [PubMed]

2012 (1)

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
[CrossRef]

2010 (4)

2009 (2)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
[CrossRef]

2005 (2)

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE 5942, 594207 (2005).
[CrossRef]

R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005).
[CrossRef] [PubMed]

2004 (2)

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

2002 (1)

1998 (2)

1996 (1)

1994 (2)

Benítez, P.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

Blen, J.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Bortz, J. C.

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

Cassarly, W. J.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[CrossRef] [PubMed]

W. J. Cassarly, “Iterative reflector design using a cumulative flux compensation approach,” Proc. SPIE 7652, 76522L (2010).
[CrossRef]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

Chaves, J.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Chen, F.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

Craford, M. G.

Ding, Y.

Dross, O.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Feng, Z.

Fournier, F. R.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[CrossRef] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

Gao, H.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Goldstein, P.

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
[CrossRef]

Gordon, J. M.

Gu, P. F.

Han, Y.

Harbers, G.

Hernández, M.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Koshel, R. J.

Krames, M. R.

Kückmann, O.

O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
[CrossRef]

Li, H.

Liu, Q.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Liu, S.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

Liu, X.

Liu, Z.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Luo, X.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

Luo, Y.

Minano, J. C.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Miñano, J. C.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

Mohedano, R.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Mueller, G. O.

Mueller-Mach, R.

Muñoz, F.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Muschaweck, J.

Oliker, V.

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE 5942, 594207 (2005).
[CrossRef]

Ong, P. T.

Parkyn, W. A.

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 154 (1998).
[CrossRef]

Qian, K.

Qin, Z.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

Rabl, A.

Ries, H.

Ries, H. R.

Rivas, J. G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Rodríguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Rolland, J. P.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[CrossRef] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

Shatz, N.

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

Shchekin, O. B.

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Wang, K.

K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013).
[CrossRef] [PubMed]

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

Wang, L.

Winston, R.

H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994).
[CrossRef]

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

Yu, F.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Zhang, W.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Zheng, Z. R.

Zhou, L.

Appl. Opt. (4)

J. Display Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Light. Science & Applications (1)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013).
[CrossRef]

Opt. Eng. (2)

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (7)

W. J. Cassarly, “Iterative reflector design using a cumulative flux compensation approach,” Proc. SPIE 7652, 76522L (2010).
[CrossRef]

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004).
[CrossRef]

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
[CrossRef]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 154 (1998).
[CrossRef]

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE 5942, 594207 (2005).
[CrossRef]

O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
[CrossRef]

Other (4)

Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

CIE (Commission Internationale de L’Eclairage), Lighting of Work Places Part 1: Indoor (CIE publication 008, Vienna, 2001).

J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Point light source and (b) surface light source.

Fig. 2
Fig. 2

Lens with a center height of h = 25 mm constructed based on point source approximation to generate a uniform illuminance distribution and simulation results with (a) a point source with a diameter of D = 10−5 mm, (b) and a surface source with a diameter of D = 10 mm.

Fig. 3
Fig. 3

Each point on a single optical surface can only precisely control one ray emitted from the LED surface light source.

Fig. 4
Fig. 4

A flow diagram of the design process.

Fig. 5
Fig. 5

(a) Luminous intensity and illuminance; (b) Luminous intensity and projection length of the source through the lens; (c) Meridian rays (in green) and skew rays (in red).

Fig. 6
Fig. 6

Four types of lens design solutions: (a) and (b) are diverging solutions, (c) and (d) are converging solutions, wherein θM is the maximal emergence angle, F and F’ are two edges of the source, and the part of the lens marked with a dashed circle is where the total internal reflection inevitably happens.

Fig. 7
Fig. 7

Geometric configuration of the profile of the lens, wherein O’ is an arbitrary point between O and F’ while Bi is an arbitrary point on the calculated profile, the output ray of the ray OBi will form an angle θi’ that is larger than θi with the y-axis according to the Snell’s law.

Fig. 8
Fig. 8

The emergence angle θi’ of the ray FBi will be larger than the prescribed maximal emergence angle θmax which will cause a light spillage.

Fig. 9
Fig. 9

Parameters of the target plane, the lens and the LED source.

Fig. 10
Fig. 10

Light spillage is related to the preset curve: the optimized (black line) and the conventional (red line); The blue line represents the output ray angle that is corresponding to the target edge, and the light whose output ray angle is above the blue line is leaked outside of the target field.

Fig. 11
Fig. 11

Simulation results: (a) initial result based on point source assumption without feedback; (b) final result based on point source assumption with feedback; (c) initial result based on improved TED method without feedback; (d) final result based on improved TED method with feedback.

Fig. 12
Fig. 12

(a) Front view and dimensioning, and (b) full view of the optical system.

Fig. 13
Fig. 13

Comparison of simulation results of the optical systems designed by the proposed method with different dimension ratios h/D on three parameters: illuminance uniformity, light control efficiency and merit function.

Fig. 14
Fig. 14

(a) Lens model to generate a linear illumination distribution and (b) the simulated illuminance distribution.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E 2 D ( x ) = cos 2 θ H I 2 D ( θ ) ,
I 2 D ( θ ) = L 2 D W ( θ ) ,
W ( θ ) = W 0 cos 2 θ ,
y=a x 2 +bx+c.
{ Optimization variables: x B 0 , y B 0 Merit function:MF( x B 0 , y B 0 ) Constraints:η η T , U E U ET ,
MF=ση+(1σ) U E ,
β j (x)= { E 0 (x)/[ α 1 E Sj (x)+(1 α 1 ) E 0 (x)] } α 2 ,
E MJ (x)= Π j=1 J β j (x) E 0 (x).
MF=0.5η+0.5 U E .
β j (x)=2 E 0 (x)/[ E Sj (x)+ E 0 (x)].
E 2 D ( x ) = E 0 ( 1 2 3 x R ) = E 0 ( 1 2 3 H tan θ R ) .
W ( θ ) = W 0 2 ( 1 2 3 H tan θ R ) cos 2 θ .
R S D = 1 N -1 i = 1 N ( E S ( x i ) E ( x i ) E ( x i ) ) 2 ,
I 2D (θ)= dΦ dθ ,
E 2D (x)= dΦ dx ,
dθ= dx cos 2 θ H .
E 2D (x)= cos 2 θ H I 2D (θ).
L 2D = d 2 Φ dxcosθdθ .
I 2D (θ)= L 2D cosθ dx = L 2D W(θ).

Metrics