Abstract

We present a lens-to-channel waveguide solar concentrator, where the lens array and the channel waveguide act as the primary and the secondary concentrator. Sunlight collected by the lens array is coupled into channel waveguides and exits from one end of the tapered waveguide directly onto photovoltaic cells. A 45°coupler is placed at each lens focal point to couple light into the waveguides. This configuration eliminates any inherent decoupling losses. We provide a detailed math model and simulation results using exemplar system parameters, showing that this structure can achieve 800x concentration at 89.1% optical efficiency under ±0.7° incidence angle.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd ed. (John Wiley, 2011), Chap. 8.
  2. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [CrossRef] [PubMed]
  3. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
    [CrossRef] [PubMed]
  4. W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
    [CrossRef]
  5. S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Appl. Opt. 51(28), 6848–6854 (2012).
    [CrossRef] [PubMed]
  6. S. C. Chu, H. Y. Wu, and H. H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE 8438, 843810 (2012).
    [CrossRef]
  7. J. H. Karp and J. E. Ford, “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 74070D (2009).
    [CrossRef]
  8. K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).
  9. I. Fujieda, K. Arizono, and Y. Okuda, “Design considerations for a concentrator photovoltaic system based on a branched planar waveguide,” J. Photonics Energy 2(1), 021807 (2012).
    [CrossRef]
  10. K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).
  11. W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic, 1978), Chap. 2.
  12. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
    [CrossRef]

2012 (5)

S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Appl. Opt. 51(28), 6848–6854 (2012).
[CrossRef] [PubMed]

S. C. Chu, H. Y. Wu, and H. H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE 8438, 843810 (2012).
[CrossRef]

K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).

I. Fujieda, K. Arizono, and Y. Okuda, “Design considerations for a concentrator photovoltaic system based on a branched planar waveguide,” J. Photonics Energy 2(1), 021807 (2012).
[CrossRef]

K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).

2011 (2)

2010 (1)

2009 (1)

J. H. Karp and J. E. Ford, “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 74070D (2009).
[CrossRef]

2007 (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Amano, R.

K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).

Arizono, K.

K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).

I. Fujieda, K. Arizono, and Y. Okuda, “Design considerations for a concentrator photovoltaic system based on a branched planar waveguide,” J. Photonics Energy 2(1), 021807 (2012).
[CrossRef]

Baker, K.

K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).

Bouchard, S.

Cai, D.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Chu, S. C.

S. C. Chu, H. Y. Wu, and H. H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE 8438, 843810 (2012).
[CrossRef]

Ford, J.

K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).

Ford, J. E.

Fujieda, I.

K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).

I. Fujieda, K. Arizono, and Y. Okuda, “Design considerations for a concentrator photovoltaic system based on a branched planar waveguide,” J. Photonics Energy 2(1), 021807 (2012).
[CrossRef]

Hallas, J.

K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).

Hallas, J. M.

Karp, J.

K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).

Karp, J. H.

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Lin, H. H.

S. C. Chu, H. Y. Wu, and H. H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE 8438, 843810 (2012).
[CrossRef]

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Okuda, Y.

K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).

I. Fujieda, K. Arizono, and Y. Okuda, “Design considerations for a concentrator photovoltaic system based on a branched planar waveguide,” J. Photonics Energy 2(1), 021807 (2012).
[CrossRef]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Shieh, W. C.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Su, G. D.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Thibault, S.

Tremblay, E. J.

Wu, H. Y.

S. C. Chu, H. Y. Wu, and H. H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE 8438, 843810 (2012).
[CrossRef]

AEU Int. J. Electron. Commun. (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Appl. Opt. (1)

J. Photonics Energy (1)

I. Fujieda, K. Arizono, and Y. Okuda, “Design considerations for a concentrator photovoltaic system based on a branched planar waveguide,” J. Photonics Energy 2(1), 021807 (2012).
[CrossRef]

Opt. Express (2)

Proc. SPIE (5)

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

K. Baker, J. Karp, J. Hallas, and J. Ford, “Practical implementation of a planar micro-optic solar concentrator,” Proc. SPIE 8485, 848504 (2012).

S. C. Chu, H. Y. Wu, and H. H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE 8438, 843810 (2012).
[CrossRef]

J. H. Karp and J. E. Ford, “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 74070D (2009).
[CrossRef]

K. Arizono, R. Amano, Y. Okuda, and I. Fujieda, “A concentrator photovoltaic system based on branched planar waveguides,” Proc. SPIE 8468, 84680K (2012).

Other (2)

W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic, 1978), Chap. 2.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd ed. (John Wiley, 2011), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A top schematic view of the lens-waveguide system. Light collected by the lens array is redirected by the couplers placed at each focus. Then it travels inside the waveguide unit and finally exits from the tapered common waveguide directly onto a PV cell. The lens array and the tapered waveguide act as the primary and the secondary concentrators. Since lenses are tilted and the waveguide becomes wider along the z-axis, any decoupling loss is eliminated.

Fig. 2
Fig. 2

The aberration-free lens focuses incoming light onto its paraxial image plane.

Fig. 3
Fig. 3

(a) Each coupler is a tilted waveguide/air interface. (b) An illustrative plot of the reflection angles in XZ plane ϕ x 0 = arc tan ( k x 0 / k z 0 ) and YZ plane ϕ y 0 = arc tan ( k y 0 / k z 0 ) . Each ellipse represents a reflection angle range for one particular coupler angle β . It is clear that the 45 ° coupler yields the minimum angles in both planes.

Fig. 4
Fig. 4

One waveguide unit cell of the concentrator.

Fig. 5
Fig. 5

(a) An exemplar plot of optical efficiency under different f-numbers and tolerance angles, where α = 1.8 × 10 4 c m 1 , n w = n d = 1.64 , n s = 1.46 and n c = 1 . (b) The performance of the waveguide concentrator. The efficiency remains the same until C 2 ~ 7.9 .

Fig. 6
Fig. 6

An exemplar plot of the estimated maximum concentration as a function of f-numbers and tolerance angles, where n w = 1.64 .

Tables (1)

Tables Icon

Table 1 Efficiency Chart for the Optimized Practical Setup

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C 1 = M × N × D 2 t × M × N × d C = D 2 2 d × t .
C 2 = W 0 W 0 2 l tan σ = 1 1 2 l W 0 tan σ 1 1 2 l N tan σ ,
C l = ( D d ) 2 = 1 [ 2 ( f / D ) tan δ M ] 2 ;
θ M = arc tan [ tan δ M + 1 2 ( f / D ) ] .
k r = k ( sin γ cos Ω , cos θ y 1 sin 2 γ cos 2 Ω , sin θ y 1 sin 2 γ cos 2 Ω ) ,
L P ( P , Ω , δ ) = [ ( P 1 ) + 1 / 2 ] D × cos Θ k z 0 / | k r | .
L T ( Ω , δ ) = W 0 × cos ( ϕ 0 σ ) cos 2 ( ϕ 0 σ ) 4 l N tan σ + 4 l N 2 tan 2 σ 2 sin σ × ( k x 0 2 + k z 0 2 ) / | k | 2 ,
C 2max = 1 12 l N tanσ = cos θ c sin( ϕ 0M +σ ) cos θ c sin ϕ 0M ,
C 1 max = 1 2 [ 2 ( f / D ) tan δ M ] 2 ,
C 2 max cos θ c sin ϕ 0 M n w cos θ c sin { arc tan [ tan δ M + 1 2 ( f / D ) ] } .

Metrics