Abstract

Recent work has shown that using a high-index cladding atop a lower-index photovoltaic absorber enables absorption of light beyond the ergodic (4n2) limit. In this paper, we propose a generalized optimization method for deriving optimal geometries that allow for such enhancement. Specifically, we adapted the direct-binary-search algorithm to optimize a complex 2-D multi-layer structure with the explicit goal of increasing photocurrent. We show that such an optimization results in enhancing the local density of optical states in an ultra-thin absorber, which forms a slot-waveguide geometry in the presence of a higher-index overcladding. Numerical simulations confirmed optical absorption approaching 100% and absorption-enhancement beyond the ergodic (4n2) limit for specific spectral bands of interest. Our method provides a direct, intuitive and computationally scalable approach for designing light-trapping nanostructures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  3. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
    [CrossRef] [PubMed]
  4. A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003).
    [CrossRef]
  5. News reports on updated world records of thin-film photovoltaics efficiencies, http://www.pv-tech.org/ .
  6. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [CrossRef] [PubMed]
  7. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  8. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
    [CrossRef] [PubMed]
  9. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20(2), 1849–1855 (2012).
    [CrossRef] [PubMed]
  10. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  11. E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
    [CrossRef]
  12. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3008 (1997).
    [CrossRef]
  13. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  14. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl. 19(4), 473–477 (2011).
    [CrossRef]
  15. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [CrossRef] [PubMed]
  16. J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
    [CrossRef]
  17. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
    [CrossRef]
  18. M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
    [CrossRef] [PubMed]
  19. A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).
  20. American Society for Testing and Materials (ASTM), Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  21. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
    [CrossRef]
  22. J. Nelson, The Physics of Solar Cells (Imperial College, 2004).
  23. G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
    [CrossRef] [PubMed]
  24. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
    [CrossRef]
  25. P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.
  26. P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21(5), 6274–6285 (2013).
    [CrossRef] [PubMed]
  27. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
    [CrossRef] [PubMed]
  28. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [CrossRef]
  29. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), A60–A76 (2013).
    [CrossRef] [PubMed]
  30. J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express 19(21), 20159–20171 (2011).
    [CrossRef] [PubMed]
  31. P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express 20(S4), A545–A553 (2012).
    [CrossRef] [PubMed]
  32. W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
    [CrossRef]
  33. Website of refractive index database, http://refractiveindex.info/ .
  34. S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209–1217 (2013).
    [CrossRef] [PubMed]
  35. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
    [CrossRef] [PubMed]
  36. E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS 12(3), 031109 (2013).
    [CrossRef]

2013 (5)

2012 (7)

P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20(2), 1849–1855 (2012).
[CrossRef] [PubMed]

G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[CrossRef] [PubMed]

P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express 20(S4), A545–A553 (2012).
[CrossRef] [PubMed]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[CrossRef]

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

2011 (5)

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
[CrossRef] [PubMed]

E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
[CrossRef]

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl. 19(4), 473–477 (2011).
[CrossRef]

J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express 19(21), 20159–20171 (2011).
[CrossRef] [PubMed]

2010 (6)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

2009 (2)

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

2008 (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

2007 (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

2004 (1)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2003 (1)

A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003).
[CrossRef]

1997 (1)

1982 (1)

Alivisatos, A. P.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Andrew, T. L.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
[CrossRef] [PubMed]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Ballif, C.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Barraud, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Battaglia, C.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Bauer, S.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Beaupre, S.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Billet, A.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Blair, S.

Boccard, M.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Bugnon, G.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Callahan, D. M.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[CrossRef]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Chandorkar, S. A.

E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS 12(3), 031109 (2013).
[CrossRef]

Chen, H. L.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

Cho, S.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Chou, S. Y.

Chuang, S. Y.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

Coates, N.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

De Wolf, S.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Deceglie, M. G.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Despeisse, M.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Ding, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Ding, W.

Dominguez-Caballero, J. A.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[CrossRef]

Domínguez-Caballero, J. A.

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Erni, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Escarré, J.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Fahr, S.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Fan, S.

S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209–1217 (2013).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Friedman, D. J.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[CrossRef]

Glowacki, E. D.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Goetzberger, A.

A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003).
[CrossRef]

Green, M. A.

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl. 19(4), 473–477 (2011).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Hall, D. G.

Haug, F. J.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Hebling, C.

A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003).
[CrossRef]

Heeger, A. J.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Joannopoulos, J. D.

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Johnson, S. G.

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Kaltenbrunner, M.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kim, G.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[CrossRef]

G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[CrossRef] [PubMed]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Leclerc, M.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Lederer, F.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Lee, H.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[CrossRef]

Lee, K.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Lee, W. H.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Li, H. B. T.

Lin, C. H.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Menon, R.

Moon, E. E.

E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS 12(3), 031109 (2013).
[CrossRef]

Moon, J. S.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Moses, D.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[CrossRef]

Nagel, J. R.

Oskooi, A. F.

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Park, S. H.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Pease, R. F.

E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS 12(3), 031109 (2013).
[CrossRef]

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Polman, A.

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Rockstuhl, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Roundry, D.

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Roy, A.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Sandhu, S.

Sariciftci, N. S.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Scarpulla, M. A.

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Schiff, E. A.

E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
[CrossRef]

Schock, H.

A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003).
[CrossRef]

Schropp, R. E.

Sekitani, T.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Söderström, K.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

Someya, T.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Sreenivasan, S. V.

E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS 12(3), 031109 (2013).
[CrossRef]

Stuart, H. R.

Su, W. F.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

Tsai, H. Y.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Verhagen, E.

Verschuuren, M. A.

Walters, R. J.

Wang, P.

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

White, M. S.

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Yablonovitch, E.

Yu, Z.

S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209–1217 (2013).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[CrossRef]

J. Appl. Phys. (1)

E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

E. E. Moon, S. A. Chandorkar, S. V. Sreenivasan, and R. F. Pease, “Thermally controlled alignment for wafer-scale lithography,” J. Micro/Nanolith. MEMS MOEMS 12(3), 031109 (2013).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. Rep. (1)

A. Goetzberger, C. Hebling, and H. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003).
[CrossRef]

Nano Lett. (3)

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11(2), 661–665 (2011).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Nat. Commun. (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–523 (2011).
[CrossRef] [PubMed]

M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770–776 (2012).
[CrossRef] [PubMed]

Nat. Mater. (2)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Opt. Express (8)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express 19(21), 20159–20171 (2011).
[CrossRef] [PubMed]

P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20(2), 1849–1855 (2012).
[CrossRef] [PubMed]

G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20(3), 2814–2823 (2012).
[CrossRef] [PubMed]

P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express 20(S4), A545–A553 (2012).
[CrossRef] [PubMed]

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), A60–A76 (2013).
[CrossRef] [PubMed]

S. Sandhu, Z. Yu, and S. Fan, “Detailed balance analysis of nanophotonic solar cells,” Opt. Express 21(1), 1209–1217 (2013).
[CrossRef] [PubMed]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21(5), 6274–6285 (2013).
[CrossRef] [PubMed]

Phys. Commun. (1)

A. F. Oskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Phys. Commun. 181, 687–702 (2010).

Phys. Rev. Lett. (1)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[CrossRef]

Phys. Status Solidi (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl. 19(4), 473–477 (2011).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Science (1)

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[CrossRef]

Other (5)

Website of refractive index database, http://refractiveindex.info/ .

P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.

News reports on updated world records of thin-film photovoltaics efficiencies, http://www.pv-tech.org/ .

J. Nelson, The Physics of Solar Cells (Imperial College, 2004).

American Society for Testing and Materials (ASTM), Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the simulation model for optimization. (a) The photovoltaic device with light trapping nanostructures defined by 22 geometric parameters. Ha is kept constant during optimization. (b) Reference device with the same volume of absorbing material as that of the structured design in (a). The angle of incidence is defined by θ. The TE and TM polarizations are defined as shown.

Fig. 2
Fig. 2

Flow chart of the direct-binary-search-based algorithm adopted for optimizing nanophotonic light trapping structures via boosting LDOS.

Fig. 3
Fig. 3

Results of the four optimized light trapping designs. In each figure, top insets: schematics of the optimized structures labelled with dimensions, bottom insets: schematics of the active regions in detail labelled with other smaller dimensions.

Fig. 4
Fig. 4

Analysis of the optimized designs. Four device geometries are again shown in (c), (f), (i) and (l) corresponding to reference absorber thicknesses of 33nm, 42nm, 68nm and 88nm, respectively. The corresponding absorbance spectra are plotted in (a), (d), (g) and (j), respectively. The corresponding current-density-enhancement spectra are plotted in (b), (e), (h) and (k), respectively. The insets in these figures showcase current-density and current-density enhancement as a function of incident angle, θ. The corresponding normalized intensity distributions at wavelengths of maximum current-density enhancement are shown in (c), (f), (i) and (l), respectively.

Fig. 5
Fig. 5

Impact of the refractive index of the cladding layer. Optimized design with (a) high-index cladding (taken from Figs. 3(b) and 4(f)) and (c) with low-index cladding (taken from Ref [26].). The corresponding absorbance spectra for (b) the high-index-cladding design and (d) the low-index-cladding design. (e) Current-density-enhancement spectra of the optimized designs and those corresponding to the ergodic limit and the LDOS limit.

Fig. 6
Fig. 6

Results of the light trapping designs with triangular scattering elements. Enhancement spectra of different angles of incidence for both rectangular and triangular scatterers of designs 1-4 are shown in (a), (c), (e) and (g) (insets: schematics of the structures). The angular analyses of Jsc enhancements of designs 1–4 with both rectangular and triangular structures are given in (b), (d), (f) and (h).

Tables (1)

Tables Icon

Table 1 Ranges and unit perturbations of geometric parameters for optimization

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A( λ )= 1 Λ active 1 2 ωε''(λ) | E( x,y,λ ) | 2 dxdy P inc (λ) .
J sc = λ min λ max 1 Λ ( qλ hc active 1 2 ωε''(λ) | E( x,y,λ ) | 2 dxdy ) IQE(λ)dλ,
E(λ)= A( λ ) A ref ( λ ) = active | E( x,y,λ ) | 2 dxdy active | E ref ( x,y,λ ) | 2 dxdy = U(λ) U ref (λ) .
E Ergodic =4 n L 2 ,
E LDOS =4 n H 2 ,

Metrics