Abstract

The breakdown plasma and successive flow leading to combustion are controlled by the combination of a nano-second Nd:YAG laser and a femto-second Ti:Sapphire (TiS) laser. The behaviors are captured by an intensified charged coupled device (ICCD) camera and a high-speed schlieren optical system. The TiS laser determines the initial position of the breakdown by supplying the initial electrons in the optical axis of focusing YAG laser pulses. We show that the initial position of the breakdown can be controlled by the incident position of the TiS laser. In addition, the ignition lean limit of the flammable mixture changes depending on the TiS laser incident position, which is influenced by hot gas distribution and the flow in the flame kernel.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
    [CrossRef]
  2. D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combustion and Flame 138, 55–77 (2004).
    [CrossRef]
  3. I. G. Dors and C. G. Parigger, “Computational fluid-dynamic model of laser-induced breakdown in air,” Appl. Opt. 42, 5978–5985 (2003).
    [CrossRef] [PubMed]
  4. S. Ghosh and K. Mahesh, “Numerical simulation of laserinduced breakdown in air,” 46th AIAA, AIAA 2008–1069 (2008).
  5. M. Lackner, S. Charareh, F. Winter, K. F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, “Investigation of the early stages in laser-induced ignition by Schlieren photography and laser- induced fluorescence spectroscopy,” Opt. Express 12, 4546–4557 (2004).
    [CrossRef] [PubMed]
  6. T.X. Phuoc and F. P. White, “Laser-Induced Spark Ignition of CH4/Air Mixtures,” Combustion and Flame 119, 203–216 (1999).
    [CrossRef]
  7. P. Chylek, M. A. Jarzembski, V. Srivastava, and R. G. Pinnick, “Pressure dependence of the laser-induced breakdown threshholds of gases and droplets,” Appl. Opt. 29, 2303–2306(1990).
    [CrossRef] [PubMed]

2009

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

2004

2003

1999

T.X. Phuoc and F. P. White, “Laser-Induced Spark Ignition of CH4/Air Mixtures,” Combustion and Flame 119, 203–216 (1999).
[CrossRef]

1990

Beduneau, J.L.

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

Bradley, D.

D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combustion and Flame 138, 55–77 (2004).
[CrossRef]

Charareh, S.

Chylek, P.

Dors, I. G.

Ghosh, S.

S. Ghosh and K. Mahesh, “Numerical simulation of laserinduced breakdown in air,” 46th AIAA, AIAA 2008–1069 (2008).

Ikeda, Y.

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

Iskra, K. F.

Jarzembski, M. A.

Kawahara, N.

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

Kopecek, H.

Lackner, M.

Mahesh, K.

S. Ghosh and K. Mahesh, “Numerical simulation of laserinduced breakdown in air,” 46th AIAA, AIAA 2008–1069 (2008).

Nakayama, T.

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

Neger, T.

Parigger, C. G.

Phuoc, T.X.

T.X. Phuoc and F. P. White, “Laser-Induced Spark Ignition of CH4/Air Mixtures,” Combustion and Flame 119, 203–216 (1999).
[CrossRef]

Pinnick, R. G.

Rüdisser, D.

Sheppard, C.G.W.

D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combustion and Flame 138, 55–77 (2004).
[CrossRef]

Srivastava, V.

Suardjaja, I.M.

D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combustion and Flame 138, 55–77 (2004).
[CrossRef]

Tomita, E.

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

White, F. P.

T.X. Phuoc and F. P. White, “Laser-Induced Spark Ignition of CH4/Air Mixtures,” Combustion and Flame 119, 203–216 (1999).
[CrossRef]

Winter, F.

Wintner, E.

Woolley, R.

D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combustion and Flame 138, 55–77 (2004).
[CrossRef]

Appl. Opt.

Combustion and Flame

T.X. Phuoc and F. P. White, “Laser-Induced Spark Ignition of CH4/Air Mixtures,” Combustion and Flame 119, 203–216 (1999).
[CrossRef]

J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combustion and Flame 156, 642–656 (2009).
[CrossRef]

D. Bradley, C.G.W. Sheppard, I.M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combustion and Flame 138, 55–77 (2004).
[CrossRef]

Opt. Express

Other

S. Ghosh and K. Mahesh, “Numerical simulation of laserinduced breakdown in air,” 46th AIAA, AIAA 2008–1069 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical arrangement

Fig. 2
Fig. 2

Breakdown threshold energy of air at different pressures

Fig. 3
Fig. 3

Relation between incident energy Ein and absorption of YAG laser pulse Eab

Fig. 4
Fig. 4

Plasma visualization images by ultra-high-speed ICCD camera

Fig. 5
Fig. 5

High-speed schlieren images (Each image set is the same shot as Fig. 4)

Fig. 6
Fig. 6

Results of ignition tests in CH4-air lean mixture. ‘○’ shows successful ignition and ‘×’ shows misfire.

Fig. 7
Fig. 7

The average and standard deviation of the maximum values of the pressure rise, and σp in CH4-air mixture.

Metrics