Abstract

A rigorous design using periodic silicon (Si) gratings as absorbers for solar cells in visible and near-infrared regions is numerically presented. The structure consists of a subwavelength Si grating layer on top of an Si substrate. Ranges of grating dimensions are preliminary considered satisfying simple and feasible fabrication techniques with an aspect ratio defined as the ratio of the grating thickness (d) and the grating lamella width (w), with 0 < d/w < 1.0. The subwavelength grating structure (SGS) is assumed to comprise different lamella widths and slits within each period in order to finely tune the grating profile such that the absorptance is significantly enhanced in the whole wavelength region. The results showed that the compound SGS yields an average absorptance of 0.92 which is 1.5 larger than that of the Si plain and conventional grating structures. It is shown that the absorptance spectrum of the proposed SGS is insensitive to the angle of incidence of the incoming light. The absorptance enhancement is also investigated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study show that the proposed method based on nanofabrication techniques provides a simple and promising solution to design solar energy absorbers or other energy harvesting devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [CrossRef]
  2. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [CrossRef]
  3. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-Insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
    [CrossRef] [PubMed]
  4. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
    [CrossRef] [PubMed]
  5. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
    [CrossRef] [PubMed]
  6. T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
    [CrossRef] [PubMed]
  7. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  8. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
    [CrossRef] [PubMed]
  9. N. Nguyen-Huu and Y.-L. Lo, “Control of infrared spectral absorptance with one-dimensional subwavelength gratings,” J. Lightwave Technol. 31(15), 2482–2490 (2013).
    [CrossRef]
  10. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
    [CrossRef] [PubMed]
  11. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
    [CrossRef] [PubMed]
  12. I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3Suppl 3), A372–A381 (2013).
    [CrossRef] [PubMed]
  13. R. Chriki, A. Yanai, J. Shappir, and U. Levy, “Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure,” Opt. Express 21(S3Suppl 3), A382–A391 (2013).
    [CrossRef] [PubMed]
  14. S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energ. Mat. Sol. 61(2), 143–151 (2000).
    [CrossRef]
  15. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energ. Mat. Sol. 92(12), 1689–1696 (2008).
    [CrossRef]
  16. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [CrossRef] [PubMed]
  17. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013).
    [CrossRef] [PubMed]
  18. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
    [CrossRef] [PubMed]
  19. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  20. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  21. J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
    [CrossRef] [PubMed]
  22. W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
    [CrossRef]
  23. T. Khaleque, H. G. Svavarsson, and R. Magnusson, “Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications,” Opt. Express 21(S4Suppl 4), A631–A641 (2013).
    [CrossRef] [PubMed]
  24. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  25. F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [CrossRef]
  26. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  27. R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
    [CrossRef]
  28. T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
    [CrossRef]
  29. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
    [CrossRef]
  30. I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).
  31. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  32. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  33. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [CrossRef]
  34. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energ. Mat. Sol. 92(11), 1305–1310 (2008).
    [CrossRef]
  35. American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  36. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  37. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
    [CrossRef]
  38. M. Shinji and O. Yukinori, “Focused ion beam applications to solid state devices,” Nanotechnology 7(3), 247–258 (1996).
    [CrossRef]
  39. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [CrossRef]
  40. D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
    [CrossRef] [PubMed]
  41. D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, and W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011).
    [CrossRef] [PubMed]
  42. N. Nguyen-Huu and Y.-L. Lo, “Tailoring the optical transmission spectra of double-layered compound metallic gratings,” IEEE Photon. J 5(1), 2700108 (2013).
    [CrossRef]
  43. Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
    [CrossRef] [PubMed]
  44. C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
    [CrossRef] [PubMed]
  45. B. Maes, J. Petráček, S. Burger, P. Kwiecien, J. Luksch, and I. Richter, “Simulations of high-Q optical nanocavities with a gradual 1D bandgap,” Opt. Express 21(6), 6794–6806 (2013).
    [CrossRef] [PubMed]

2013

N. Nguyen-Huu and Y.-L. Lo, “Tailoring the optical transmission spectra of double-layered compound metallic gratings,” IEEE Photon. J 5(1), 2700108 (2013).
[CrossRef]

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

B. Maes, J. Petráček, S. Burger, P. Kwiecien, J. Luksch, and I. Richter, “Simulations of high-Q optical nanocavities with a gradual 1D bandgap,” Opt. Express 21(6), 6794–6806 (2013).
[CrossRef] [PubMed]

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3Suppl 3), A372–A381 (2013).
[CrossRef] [PubMed]

R. Chriki, A. Yanai, J. Shappir, and U. Levy, “Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure,” Opt. Express 21(S3Suppl 3), A382–A391 (2013).
[CrossRef] [PubMed]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013).
[CrossRef] [PubMed]

T. Khaleque, H. G. Svavarsson, and R. Magnusson, “Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications,” Opt. Express 21(S4Suppl 4), A631–A641 (2013).
[CrossRef] [PubMed]

N. Nguyen-Huu and Y.-L. Lo, “Control of infrared spectral absorptance with one-dimensional subwavelength gratings,” J. Lightwave Technol. 31(15), 2482–2490 (2013).
[CrossRef]

2012

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[CrossRef] [PubMed]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-Insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
[CrossRef] [PubMed]

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

2011

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, and W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011).
[CrossRef] [PubMed]

2010

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

2009

2008

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[CrossRef] [PubMed]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energ. Mat. Sol. 92(12), 1689–1696 (2008).
[CrossRef]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energ. Mat. Sol. 92(11), 1305–1310 (2008).
[CrossRef]

2007

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

2005

2003

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

2002

F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

2000

W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energ. Mat. Sol. 61(2), 143–151 (2000).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1996

1995

1981

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

1974

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

1965

Adams, J.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Agrawal, M.

Andreani, L. C.

Andrewartha, J.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Asano, T.

Auslender, M.

S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energ. Mat. Sol. 61(2), 143–151 (2000).
[CrossRef]

Barnett, A.

Botten, I.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Bozzola, A.

Burger, S.

Cabarrocas, P. R. I.

Chaminda, M.

Chen, C.

Chen, C. D.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Chen, C.-H.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Chen, K.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Chen, Y.-B.

Chriki, R.

Colin, C.

Collin, S.

Craig, M.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

Creazzo, T.

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Dewan, R.

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Fu, L.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Garcia-Vidal, F.

F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gaylord, T. K.

Giessen, H.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Gippius, N. A.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Granet, G.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Grann, E. B.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energ. Mat. Sol. 92(11), 1305–1310 (2008).
[CrossRef]

Guo, L. J.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Hane, K.

Hava, S.

S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energ. Mat. Sol. 61(2), 143–151 (2000).
[CrossRef]

Hessel, A.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hong, A. J.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Honsberg, C.

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Khaleque, T.

Kim, J.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Knipp, D.

Kowalczewski, P.

Krauss, T. F.

Kwiecien, P.

Lalanne, P.

Levy, U.

Lewis, L.

Li, J. Q.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

Li, L.

Li, T.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

Li, X.-F.

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energ. Mat. Sol. 92(12), 1689–1696 (2008).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Liscidini, M.

Liu, H.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

Liu, Z.-H.

Lo, Y.-L.

Luksch, J.

Ma, K. J.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Maes, B.

Magnusson, R.

Mallick, S. B.

Marinkovic, M.

Martin-Moreno, L.

F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Martins, E. R.

Massiot, I.

Maystre, D.

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

McPhedran, R.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

McPhedran, R. C.

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

Mochizuki, K.

Moharam, M. G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Morris, G. M.

Mutitu, J. G.

Nah, J.-W.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Nguyen-Huu, N.

Noda, S.

Noriega, R.

Norris, D. J.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Ok, J. G.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Oliner, A. A.

Patrini, M.

Pelouard, J.-L.

Petrácek, J.

Peumans, P.

Phadke, S.

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energ. Mat. Sol. 92(12), 1689–1696 (2008).
[CrossRef]

Pina-Hernandez, C.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Pommet, D. A.

Prather, D. W.

Preist, T.

W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Reardon, C.

Richter, I.

Ross, F. M.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Sadana, D. K.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Salleo, A.

Sambles, J. R.

W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Sauvan, C.

Schuster, C. S.

Schweizer, H.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Scullion, M. G.

Sergeant, N. P.

Shappir, J.

Shi, S.

Shin, B.

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Shin, Y. J.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Shinji, M.

M. Shinji and O. Yukinori, “Focused ion beam applications to solid state devices,” Nanotechnology 7(3), 247–258 (1996).
[CrossRef]

Skigin, D. C.

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Stein, A.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Sung, C.-K.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Svavarsson, H. G.

Tan, W.-C.

W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Taubert, R.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Tseng, A. A.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

Wang, F. M.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

Wang, L.

Wang, L.-L.

Wang, Q. J.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

Weiss, T.

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Wu, C.-L.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Wu, Y.-K.

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

Xiang, D.

Yamaguchi, M.

Yanai, A.

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yao, P.-H.

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yu, Z.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Yukinori, O.

M. Shinji and O. Yukinori, “Focused ion beam applications to solid state devices,” Nanotechnology 7(3), 247–258 (1996).
[CrossRef]

Zhai, X.

Zhao, W.-W.

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zhu, S. N.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

Zhu, Y. Y.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

ACS Nano

J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, “Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres,” ACS Nano 6(1), 265–271 (2012).
[CrossRef] [PubMed]

Adv. Mater.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

IEEE Photon. J

N. Nguyen-Huu and Y.-L. Lo, “Tailoring the optical transmission spectra of double-layered compound metallic gratings,” IEEE Photon. J 5(1), 2700108 (2013).
[CrossRef]

IEEE Trans. Electron. Packag. Manuf.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” J. Mod. Opt. 28, 413–428 (1981).

J. Opt. Soc. Am. A

Nano Lett.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Nanotechnology

M. Shinji and O. Yukinori, “Focused ion beam applications to solid state devices,” Nanotechnology 7(3), 247–258 (1996).
[CrossRef]

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[CrossRef] [PubMed]

C.-L. Wu, C.-K. Sung, P.-H. Yao, and C.-H. Chen, “Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift,” Nanotechnology 24(26), 265301 (2013).
[CrossRef] [PubMed]

Opt. Acta (Lond.)

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

Opt. Express

T. Khaleque, H. G. Svavarsson, and R. Magnusson, “Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications,” Opt. Express 21(S4Suppl 4), A631–A641 (2013).
[CrossRef] [PubMed]

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013).
[CrossRef] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[CrossRef] [PubMed]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-Insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
[CrossRef] [PubMed]

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
[CrossRef] [PubMed]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[CrossRef] [PubMed]

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. I. Cabarrocas, J.-L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3Suppl 3), A372–A381 (2013).
[CrossRef] [PubMed]

R. Chriki, A. Yanai, J. Shappir, and U. Levy, “Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure,” Opt. Express 21(S3Suppl 3), A382–A391 (2013).
[CrossRef] [PubMed]

B. Maes, J. Petráček, S. Burger, P. Kwiecien, J. Luksch, and I. Richter, “Simulations of high-Q optical nanocavities with a gradual 1D bandgap,” Opt. Express 21(6), 6794–6806 (2013).
[CrossRef] [PubMed]

D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, and W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011).
[CrossRef] [PubMed]

Photon. Nanostructures

T. Weiss, N. A. Gippius, G. Granet, S. G. Tikhodeev, R. Taubert, L. Fu, H. Schweizer, and H. Giessen, “Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems,” Photon. Nanostructures 9(4), 390–397 (2011).
[CrossRef]

Phys. Rev. B

F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

W.-C. Tan, J. R. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Phys. Rev. Lett.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Sol. Energ. Mat. Sol.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energ. Mat. Sol. 92(11), 1305–1310 (2008).
[CrossRef]

S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energ. Mat. Sol. 61(2), 143–151 (2000).
[CrossRef]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energ. Mat. Sol. 92(12), 1689–1696 (2008).
[CrossRef]

Other

American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic illustration of the grating structure whose geometry is defined by the grating period Λ, the grating thickness d and the lamella width w. The transverse magnetic wave (H) (parallel to the grating grooves or y-axis) is incident on the grating with a wavevector k and an angle θ. (b) Optical constants of the Si material used in this study [34]; the inset figure shows the index ratio (κ/n) between the extinction index κ and the refractive index n.

Fig. 2
Fig. 2

Contour plots of absorptance (A) for wavelengths of 300 ~1100 nm at TM normal incidence with variations of the grating thickness, 20 < d < 200 nm, and the lamella width, 0 < w < 300 nm. The designed parameters for tuning geometric structures to enhance absorptance are marked by two dash lines.

Fig. 3
Fig. 3

Schematic of simple and compound grating structures with the grating period Λ, the lamella widths (w1 = 60 nm and w2 = 120 nm), and the same grating thickness (d = 80 nm). The proposed structures are classified by groups I and II (TM wave incidence in all cases).

Fig. 4
Fig. 4

Absorptance spectra of simple and compound grating structures (group I and II) for the TM wave at normal incidence. The left-hand side inset represents the absorptance spectra plotted for TE wave, while the right-hand side inset shows validation between the RCWA and FEM methods used to calculate spectral absorptance peak D2 (located a λ = 420 nm) with different angles of incidence.

Fig. 5
Fig. 5

Absorptance for wavelengths of 300 ~1100 nm at the TM wave versus angles of incidence for CGI and CGII structures.

Fig. 6
Fig. 6

Near-field patterns of grating structures of group I including SGI and CGI at points A1 (at λ = 470 nm), A2 (at λ = 460 nm), B1 (at λ = 370 nm), and B2 (at λ = 390 nm) as plotted in the top right-hand side of Fig. 4. The top figures represent electromagnetic field distributions while the bottom figures show energy density and Poynting vector patterns within one grating period.

Fig. 7
Fig. 7

Near-field patterns of grating structures of group II including SGII and CGII at points C1 (at λ = 515 nm), C2 (at λ = 515 nm), D1 (at λ = 410 nm), and D2 (at λ = 420 nm) as plotted in the bottom right-hand side of Fig. 4. The top figures represent electromagnetic field distributions while the bottom figures show energy density and Poynting vector patterns within one grating period.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A= 4n (n+1) 2 + κ 2 = 4 (κ/n) 1 κ [ κ(κ/n) ] 2 +κ

Metrics