Abstract

The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Zhao, D. L. Harrington, and M.-C. Lai, Automotive Gasoline Direct-Injection Engines (Society of Automotive Engineers, Inc. 2002)
  2. C. Stan, Direct Fuel Injection for Gasoline Engines (Society of Automotive Engineers, Inc., 1999)
  3. C. Preussner, C. Döring, S. Fehler, and S. Kampmann, “GDI: Interaction between mixture preparation, combustion system and injector performance,” SAE Paper No. 980498 (1998).
  4. T. Honda, M. Kawamoto, H. Katashiba, M. Sumida, N. Fukutomi, and K. Kawajiri, “A study of mixture formation and combustion for spray guided DISI,” SAE Paper No. 2004–01–0046 (2004).
  5. C. Schwarz, E. Shünemann, B. Durst, J. Fischer, and A. Witt, “Potentials of the spray-guided BMW DI combustion system,” SAE Paper No. 2006–01–1265 (2006).
  6. R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
    [CrossRef]
  7. S. Yamamoto, D. Tanaka, K. Sato, and M. Yokoe, “Keys to understanding spray-guided combustion of a narrow-spacing gasoline direct injection SI engine with a centrally mounted multi-hole injector,” SAE Paper No. 2009–01–1497 (2009).
  8. N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
    [CrossRef]
  9. S. Pischinger and J. B. Heywood, “A model for flame kernel development in a spark-ignition engine,” Proc. Combust. Inst. 23, 1033–1104 (1990).
  10. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
    [CrossRef]
  11. V. Groß, R. Schiessl, H. Kubach, U. Spicher, and U. Maas, “Influence of laser-induced ignition on spray-guided combustion—Experimental results and numerical simulation of ignition processes,” SAE Paper No. 2009–01–2623 (2009).
  12. N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
    [CrossRef]
  13. N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
    [CrossRef]
  14. J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
    [CrossRef]
  15. L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
    [CrossRef]
  16. N. Kawahara and E. Tomita, “PIV measurement of acoustic streaming around droplet in an acoustic levitator, atomization,” J. ILASS-Japan 14(47), 39–46 (2005).
  17. F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
    [CrossRef]
  18. A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
    [CrossRef]

2010

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
[CrossRef]

2009

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
[CrossRef]

2007

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[CrossRef]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

2005

N. Kawahara and E. Tomita, “PIV measurement of acoustic streaming around droplet in an acoustic levitator, atomization,” J. ILASS-Japan 14(47), 39–46 (2005).

2000

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

1990

S. Pischinger and J. B. Heywood, “A model for flame kernel development in a spark-ignition engine,” Proc. Combust. Inst. 23, 1033–1104 (1990).

Ahmed, F.

F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
[CrossRef]

Andersson, Ö.

L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
[CrossRef]

Beduneau, J. L.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

Dahms, R.

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Drake, M.

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Elliott, G.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[CrossRef]

Fansler, T.

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Glumac, N.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[CrossRef]

Herden, W.

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

Heywood, J. B.

S. Pischinger and J. B. Heywood, “A model for flame kernel development in a spark-ignition engine,” Proc. Combust. Inst. 23, 1033–1104 (1990).

Honda, T.

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

Ikeda, Y.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

Kadowaki, T.

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

Katashiba, H.

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

Kawahara, N.

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
[CrossRef]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

N. Kawahara and E. Tomita, “PIV measurement of acoustic streaming around droplet in an acoustic levitator, atomization,” J. ILASS-Japan 14(47), 39–46 (2005).

Kook, S.

L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
[CrossRef]

Kuo, T.

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Lippert, A.

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Müsing, A.

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

Nakayama, T.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

Persson, H.

L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
[CrossRef]

Peters, N.

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

Pickett, L. M.

L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
[CrossRef]

Pischinger, S.

S. Pischinger and J. B. Heywood, “A model for flame kernel development in a spark-ignition engine,” Proc. Combust. Inst. 23, 1033–1104 (1990).

Ridderbusch, H.

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

Riedel, U.

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

Sumida, M.

F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
[CrossRef]

Tomita, E.

F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
[CrossRef]

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

N. Kawahara and E. Tomita, “PIV measurement of acoustic streaming around droplet in an acoustic levitator, atomization,” J. ILASS-Japan 14(47), 39–46 (2005).

Warnatz, J.

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

Appl. Phys. B

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[CrossRef]

Combust. Flame

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, and Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

Exp. Fluids

N. Kawahara, E. Tomita, T. Kadowaki, T. Honda, and H. Katashiba, “In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method,” Exp. Fluids 49(4), 925–936 (2010).
[CrossRef]

J. ILASS-Japan

N. Kawahara and E. Tomita, “PIV measurement of acoustic streaming around droplet in an acoustic levitator, atomization,” J. ILASS-Japan 14(47), 39–46 (2005).

J. Therm. Sci. Technol.

F. Ahmed, N. Kawahara, E. Tomita, and M. Sumida, “Characterization of the spray of the DISI multi-hole injector by means of phase Doppler anemometer,” J. Therm. Sci. Technol. 5(1), 36–50 (2010).
[CrossRef]

Opt. Commun.

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

Opt. Lasers Eng.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[CrossRef]

Proc. Combust. Inst.

A. Müsing, U. Riedel, J. Warnatz, W. Herden, and H. Ridderbusch, “Laser-induced breakdown in air and behind droplets: A detailed Monte-Carlo simulation,” Proc. Combust. Inst. 31(2), 3007–3014 (2007).
[CrossRef]

L. M. Pickett, S. Kook, H. Persson, and Ö. Andersson, “Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition,” Proc. Combust. Inst. 32(2), 2793–2800 (2009).
[CrossRef]

S. Pischinger and J. B. Heywood, “A model for flame kernel development in a spark-ignition engine,” Proc. Combust. Inst. 23, 1033–1104 (1990).

R. Dahms, T. Fansler, M. Drake, T. Kuo, A. Lippert, and N. Peters, “Modeling ignition phenomena in spray-guided spark-ignited engines,” Proc. Combust. Inst. 32(2), 2743–2750 (2009).
[CrossRef]

Other

S. Yamamoto, D. Tanaka, K. Sato, and M. Yokoe, “Keys to understanding spray-guided combustion of a narrow-spacing gasoline direct injection SI engine with a centrally mounted multi-hole injector,” SAE Paper No. 2009–01–1497 (2009).

F. F. Zhao, D. L. Harrington, and M.-C. Lai, Automotive Gasoline Direct-Injection Engines (Society of Automotive Engineers, Inc. 2002)

C. Stan, Direct Fuel Injection for Gasoline Engines (Society of Automotive Engineers, Inc., 1999)

C. Preussner, C. Döring, S. Fehler, and S. Kampmann, “GDI: Interaction between mixture preparation, combustion system and injector performance,” SAE Paper No. 980498 (1998).

T. Honda, M. Kawamoto, H. Katashiba, M. Sumida, N. Fukutomi, and K. Kawajiri, “A study of mixture formation and combustion for spray guided DISI,” SAE Paper No. 2004–01–0046 (2004).

C. Schwarz, E. Shünemann, B. Durst, J. Fischer, and A. Witt, “Potentials of the spray-guided BMW DI combustion system,” SAE Paper No. 2006–01–1265 (2006).

V. Groß, R. Schiessl, H. Kubach, U. Spicher, and U. Maas, “Influence of laser-induced ignition on spray-guided combustion—Experimental results and numerical simulation of ignition processes,” SAE Paper No. 2009–01–2623 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental apparatus.

Fig. 2
Fig. 2

Plasma image and breakdown threshold.

Fig. 3
Fig. 3

Time-series of laser ignited flame image under each ambient temperature.

Fig. 4
Fig. 4

Time evolution of laser-induced plasma in fuel spray at Pi = 1MPa and Ta = 296K.

Fig. 5
Fig. 5

Time evolution of laser-induced plasma in fuel spray at Pi = 7MPa, Ta = 296K and 390K.

Fig. 6
Fig. 6

Droplet scattering at different location to lens focus.

Fig. 7
Fig. 7

Lens effects of levitated droplet on laser focusing position.

Metrics