Abstract

The design and simulation of a wide angle, spectrally selective absorber/emitter metallic photonic crystal (MPhC) is presented. By using dielectric filled cavities, the angular, spectrally selective absorption/emission of the MPhC is dramatically enhanced over an air filled design by minimizing diffraction losses. Theoretical analysis is performed and verified via rigorous coupled wave analysis (RCWA) based simulations. An efficiency comparison of the dielectric filled designs for solar thermophotovoltaic applications is performed for the absorber and emitter which yields a 7% and 15.7% efficiency improvement, respectively, compared to air filled designs. The converted power output density is also improved by 33.5%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
    [CrossRef] [PubMed]
  2. W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
    [CrossRef]
  3. L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
    [CrossRef]
  4. H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3 Al5O12 eutectic composite selective emitter,” in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, pp. 1214–1217 (2000).
  5. K. W. Stone, N. S. Fatemi, and L. M. Garverick, “Operation and component testing of a solar thermophotovoltaic power system,” Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 1421–1424 (1996).
    [CrossRef]
  6. V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
    [CrossRef]
  7. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
    [CrossRef] [PubMed]
  8. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [CrossRef] [PubMed]
  9. H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
    [CrossRef]
  10. D. Kirikae, Y. Suzuki, and N. Kasagi, “A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation,” J. Micromech. Microeng. 20(10), 104006 (2010).
    [CrossRef]
  11. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
  12. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [CrossRef]
  13. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
  14. H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
    [CrossRef]
  15. W.-C. Chen, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Characterization of Surface Electromagnetic Waves and Scattering on Infrared Metamaterial Absorbers,” eprint http://arxiv.org/abs/1212.2868 (2012).
  16. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  17. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  18. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [CrossRef] [PubMed]
  19. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [CrossRef]
  20. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [CrossRef] [PubMed]
  21. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [CrossRef] [PubMed]
  22. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [CrossRef]
  23. J. Chou, K. Smyth, and S. Kim, “Low aspect ratio nanophotonic filled cavities with Q-matching for scalable thermophotovoltaic power conversion,” presented at the 26th IEEE Photonics Conference, Bellevue Washington, 576–577, (2013).
    [CrossRef]
  24. J. D. Jackson, Classical Electrodynamics Third Edition, 3rd ed. (Wiley, 1998).
  25. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  26. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
    [CrossRef]
  27. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [CrossRef]
  28. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
    [CrossRef]
  29. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [CrossRef]
  30. F. T. Ulaby, Fundamentals of Applied Electromagnetics, 5th ed. (Pearson/PrenticeHall, 2007).
  31. M. F. Modest, Radiative Heat Transfer, 3rd ed. (Academic, 2003).
  32. D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).
  33. P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
    [CrossRef]

2013

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

2012

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[CrossRef]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

2011

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

2010

D. Kirikae, Y. Suzuki, and N. Kasagi, “A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation,” J. Micromech. Microeng. 20(10), 104006 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

2009

2008

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

2004

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
[CrossRef] [PubMed]

2003

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[CrossRef]

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).

1935

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Agrawal, M.

Andreev, V. M.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Aschaber, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).

Avery, J. E.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[CrossRef]

Bathurst, S.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Bermel, P.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

Boerner, V.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).

Celanovic, I.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
[CrossRef] [PubMed]

Chan, W. R.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

Chou, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Chou, S.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[CrossRef]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[CrossRef] [PubMed]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Fraas, L. M.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[CrossRef]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

Ghebrebrhan, M.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

Grilikhes, V. A.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Hane, K.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[CrossRef]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Huang, H. X.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[CrossRef]

Ilak, M.

Jensen, K. F.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Joannopoulos, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Joannopoulos, J. D.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[CrossRef]

Kasagi, N.

D. Kirikae, Y. Suzuki, and N. Kasagi, “A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation,” J. Micromech. Microeng. 20(10), 104006 (2010).
[CrossRef]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
[CrossRef] [PubMed]

Khvostikov, V. P.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Khvostikova, O. A.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Kim, S.-G.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Kirikae, D.

D. Kirikae, Y. Suzuki, and N. Kasagi, “A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation,” J. Micromech. Microeng. 20(10), 104006 (2010).
[CrossRef]

Lee, H.-J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Lee, J.

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

Li, D. T.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Li, Z. W.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[CrossRef]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Luther, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

O’Sullivan, F.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Pan, J. F.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Perreault, D.

Peumans, P.

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Pincon, O.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Rephaeli, E.

Rinnerbauer, V.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

Rumyantsev, V. D.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Sadchikov, N. A.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Sai, H.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[CrossRef]

Saka, N.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

Schlemmer, C.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

Sergeant, N. P.

Shu, C.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Shvarts, M. Z.

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

Smyth, K.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

Soljacic, M.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Suzuki, Y.

D. Kirikae, Y. Suzuki, and N. Kasagi, “A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation,” J. Micromech. Microeng. 20(10), 104006 (2010).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

Xiang Yeng, Y.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Xue, H.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Yang, W.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

Yugami, H.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[CrossRef]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

AIP Conf. Proc.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).

Annu. Rev. Heat Transfer

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Annu. Rev. Heat Transfer 15(15), 231–254 (2012).
[CrossRef]

Appl. Phys. Lett.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Comput. Phys. Commun.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[CrossRef]

Energy Convers. Manage.

W. Yang, S. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, “Microscale combustion research for application to micro thermophotovoltaic systems,” Energy Convers. Manage. 44(16), 2625–2634 (2003).
[CrossRef]

J. Micromech. Microeng.

D. Kirikae, Y. Suzuki, and N. Kasagi, “A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation,” J. Micromech. Microeng. 20(10), 104006 (2010).
[CrossRef]

J. Opt.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[CrossRef]

J. Vac. Sci. Technol. B

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljacic, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).

Nano Lett.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. 83(3), 033810 (2011).
[CrossRef]

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Phys. Rev. Lett.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells

V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, and M. Z. Shvarts, “Concentrator PV modules and solar cells for TPV systems,” Sol. Energy Mater. Sol. Cells 84(1–4), 3–17 (2004).
[CrossRef]

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energy Mater. Sol. Cells 79(1), 35–49 (2003).
[CrossRef]

Other

W.-C. Chen, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Characterization of Surface Electromagnetic Waves and Scattering on Infrared Metamaterial Absorbers,” eprint http://arxiv.org/abs/1212.2868 (2012).

J. Chou, K. Smyth, and S. Kim, “Low aspect ratio nanophotonic filled cavities with Q-matching for scalable thermophotovoltaic power conversion,” presented at the 26th IEEE Photonics Conference, Bellevue Washington, 576–577, (2013).
[CrossRef]

J. D. Jackson, Classical Electrodynamics Third Edition, 3rd ed. (Wiley, 1998).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3 Al5O12 eutectic composite selective emitter,” in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, pp. 1214–1217 (2000).

K. W. Stone, N. S. Fatemi, and L. M. Garverick, “Operation and component testing of a solar thermophotovoltaic power system,” Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 1421–1424 (1996).
[CrossRef]

F. T. Ulaby, Fundamentals of Applied Electromagnetics, 5th ed. (Pearson/PrenticeHall, 2007).

M. F. Modest, Radiative Heat Transfer, 3rd ed. (Academic, 2003).

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a STPV system. (b) Schematic of the dielectric filled MPhC given the radius r, period a, depth d, index of cavity n, free-space wave vector k0, incident angle θ, and azimuthal angle φ.

Fig. 2
Fig. 2

The angle of incidence at the onset of diffraction of order m = 1 as a function of λ / a based on Eq. (3)

Fig. 3
Fig. 3

Simulated emissivity spectrums. (a) Shows the spectrum of an air filled (n = 1) cavity with dimensions r = 0.625 µm, d = 2.8 µm, a = 1.4 µm, as a function of incident angle θ where φ is averaged from φ = 0°-90°. As the incident angle is increased, the emissivity drops significantly. (b) Shows the spectrum of a dielectric filled (n = 1.8) cavity with dimensions of r = 0.3 µm, d = 1.2 µm, a = 0.7 µm, with φ averaged over φ = 0°-90°. As the incident angle is increased, the spectrum remains much more robust. Contour plots of the emissivity as a function of incident angle and wavelength are shown for the air filled cavity (c) and the dielectric filled cavity (d) both at φ = 0°. The white lines are the diffraction thresholds as defined in Eq. (3).

Fig. 4
Fig. 4

Emissivity spectrum of dielectric filled cavities with (a) TM (P-Polarized) light versus (b) TE (S-Polarized) light as a function of incident angle θ and φ = 0°. The dimensions of the cavities are the same as those in Fig. 3(b).

Fig. 5
Fig. 5

Emissivity spectrum of air filled cavities with (a) TM (P-Polarized) light versus (b) TE (S-Polarized) light as a function of incident angle θ and φ = 0°. Wood’s anomaly can be observed in the TM spectrum but not the TE spectrum, as is consistent with theory. The dimension of the air filled cavities are the same as those shown in Fig. 3(a).

Tables (2)

Tables Icon

Table 1 Calculated STPV component efficiencies based on normal and hemispherical properties

Tables Icon

Table 2 Calculated converted power densities

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ ij = 2π(r+δ( λ ij ))n χ ' ij
a ( sin θ i + sin θ m ) = m λ , m = ± 1 , ± 2 , ± 3...
θ i = sin 1 ( λ m a 1 )
ε λ = 1 π 0 2π 0 π 2 ε ' λ (λ,φ,θ)cosθsinθdθdφ
η c = α ¯ ε ¯ σ T 4 C G s
η s = Q e,λ< λ g Q e
P D =π 0 λ g ε λ 2h c 2 λ 5 1 e ( hc λ k B T ) 1 λ λ g dλ

Metrics