Abstract

We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
    [CrossRef]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  3. S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
    [CrossRef]
  4. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
    [CrossRef] [PubMed]
  5. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
    [CrossRef]
  6. U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
    [CrossRef]
  7. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  8. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
    [CrossRef]
  9. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
    [CrossRef] [PubMed]
  10. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
    [CrossRef]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  12. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  13. S. John, “Why trap light?” Nat. Mater. 11(12), 997–999 (2012).
    [CrossRef] [PubMed]
  14. M. Green, Third Generation Photovoltaics (Springer, 2006).
  15. S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6, 2972–2983 (2013).
  16. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
    [CrossRef] [PubMed]
  17. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [CrossRef]
  18. G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074326 (2012).
    [CrossRef]
  19. A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074327 (2012).
    [CrossRef]
  20. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  21. X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
    [CrossRef] [PubMed]
  22. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  23. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  24. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
    [CrossRef]
  25. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  26. S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
    [CrossRef]
  27. A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
    [CrossRef]
  28. Y. C. Chen and T. M. Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb, R (R=Er, Ho) phosphors,” J. Rare Earths 29(8), 723–726 (2011).
    [CrossRef]
  29. Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys. 109(11), 114905 (2011).
    [CrossRef]
  30. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
    [CrossRef] [PubMed]
  31. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
    [CrossRef]
  32. J. C. C. Fan, “The future of high efficiency solar cells,” Sol. Cells 12(1-2), 51–62 (1984).
    [CrossRef]
  33. M. F. Lamorte and D. Abbot, “Analysis of AlGaAs–GaInAs cascade solar cell under AM0–AM5 spectra,” Solid-State Electron. 22(5), 467–473 (1979).
    [CrossRef]
  34. F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys. 89(7), 4010 (2001).
    [CrossRef]
  35. R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
    [CrossRef]
  36. M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys. 75(8), 4022–4031 (1994).
    [CrossRef]
  37. G. Gutller and H. Queisser, “Impurity photovoltaic effect in silicon,” Energy Convers. 10(2), 51–55 (1970).
    [CrossRef]
  38. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]
  39. T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
    [CrossRef]
  40. P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
    [CrossRef]
  41. S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
    [CrossRef]
  42. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
    [CrossRef]
  43. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
    [CrossRef] [PubMed]
  44. A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
    [CrossRef]
  45. J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [CrossRef] [PubMed]
  46. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
    [CrossRef]
  47. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  48. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  49. S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
    [CrossRef]
  50. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
    [CrossRef]
  51. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  52. R. Ren, Y. Guo, and R. Zhu, “Design of a plasmonic back reflector for silicon nanowire decorated solar cells,” Opt. Lett. 37(20), 4245–4247 (2012).
    [CrossRef] [PubMed]
  53. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express 21(S2Suppl 2), A295–A304 (2013).
    [CrossRef] [PubMed]
  54. K. Zhou, Z. Guo, X. Li, J. Y. Jung, S. W. Jee, K. T. Park, H. D. Um, N. Wang, and J. H. Lee, “The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector,” Opt. Express 20(S5Suppl 5), A777–A787 (2012).
    [CrossRef] [PubMed]
  55. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  56. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [CrossRef] [PubMed]
  57. D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33(4), 235–242 (2000).
    [CrossRef] [PubMed]
  58. V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
    [CrossRef]
  59. J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
    [CrossRef]
  60. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25(9), 2757–2765 (2007).
    [CrossRef]

2013 (6)

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6, 2972–2983 (2013).

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
[CrossRef] [PubMed]

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[CrossRef]

A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express 21(S2Suppl 2), A295–A304 (2013).
[CrossRef] [PubMed]

2012 (14)

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[CrossRef] [PubMed]

K. Zhou, Z. Guo, X. Li, J. Y. Jung, S. W. Jee, K. T. Park, H. D. Um, N. Wang, and J. H. Lee, “The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector,” Opt. Express 20(S5Suppl 5), A777–A787 (2012).
[CrossRef] [PubMed]

R. Ren, Y. Guo, and R. Zhu, “Design of a plasmonic back reflector for silicon nanowire decorated solar cells,” Opt. Lett. 37(20), 4245–4247 (2012).
[CrossRef] [PubMed]

S. John, “Why trap light?” Nat. Mater. 11(12), 997–999 (2012).
[CrossRef] [PubMed]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
[CrossRef]

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074326 (2012).
[CrossRef]

A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074327 (2012).
[CrossRef]

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

2011 (5)

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

Y. C. Chen and T. M. Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb, R (R=Er, Ho) phosphors,” J. Rare Earths 29(8), 723–726 (2011).
[CrossRef]

Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys. 109(11), 114905 (2011).
[CrossRef]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5), A1148–A1154 (2011).
[CrossRef] [PubMed]

2010 (7)

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[CrossRef] [PubMed]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[CrossRef]

2009 (2)

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

2008 (3)

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

2007 (3)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[CrossRef]

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25(9), 2757–2765 (2007).
[CrossRef]

2006 (2)

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

2001 (1)

F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys. 89(7), 4010 (2001).
[CrossRef]

2000 (1)

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33(4), 235–242 (2000).
[CrossRef] [PubMed]

1996 (1)

P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

1994 (1)

M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys. 75(8), 4022–4031 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1984 (3)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
[CrossRef]

J. C. C. Fan, “The future of high efficiency solar cells,” Sol. Cells 12(1-2), 51–62 (1984).
[CrossRef]

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

1982 (1)

1979 (1)

M. F. Lamorte and D. Abbot, “Analysis of AlGaAs–GaInAs cascade solar cell under AM0–AM5 spectra,” Solid-State Electron. 22(5), 467–473 (1979).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1970 (1)

G. Gutller and H. Queisser, “Impurity photovoltaic effect in silicon,” Energy Convers. 10(2), 51–55 (1970).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Abass, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

Abbot, D.

M. F. Lamorte and D. Abbot, “Analysis of AlGaAs–GaInAs cascade solar cell under AM0–AM5 spectra,” Solid-State Electron. 22(5), 467–473 (1979).
[CrossRef]

Abrams, Z. R.

Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys. 109(11), 114905 (2011).
[CrossRef]

Aichele, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Alaeian, H.

A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Alù, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

Atre, A. C.

A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
[CrossRef]

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Ballif, C.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Benick, J.

Benson, O.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Bienstman, P.

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Biner, D.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Bläsi, B.

Boccard, M.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Böttler, W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Boyer, J.-Ch.

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[CrossRef] [PubMed]

Bugnon, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Bureau, B.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Burgelman, M.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Carius, R.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Catchpole, K. R.

Chapman, R. L.

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Chen, T. M.

Y. C. Chen and T. M. Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb, R (R=Er, Ho) phosphors,” J. Rare Earths 29(8), 723–726 (2011).
[CrossRef]

Chen, Y. C.

Y. C. Chen and T. M. Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb, R (R=Er, Ho) phosphors,” J. Rare Earths 29(8), 723–726 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

de Araújo, C. B.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Deinega, A.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[CrossRef]

A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074327 (2012).
[CrossRef]

Demésy, G.

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074326 (2012).
[CrossRef]

Depauw, V.

Despeisse, M.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Dionne, J. A.

A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
[CrossRef]

Dross, F.

Drouard, E.

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Eichelkraut, T.

Eisenlohr, J.

El Daif, O.

Escarré, J.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Etxarri, A. G.

A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
[CrossRef]

Eyderman, S.

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[CrossRef]

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

Fan, J. C. C.

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

J. C. C. Fan, “The future of high efficiency solar cells,” Sol. Cells 12(1-2), 51–62 (1984).
[CrossRef]

Fave, A.

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

Fischer, S.

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Fisher, S.

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

Foster, S.

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6, 2972–2983 (2013).

Gale, R. P.

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

Gamelin, D. R.

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33(4), 235–242 (2000).
[CrossRef] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gipart, P.

P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Glunz, S. W.

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Goldschmidt, J. C.

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Gomard, G.

Gordon, I.

Green, M. A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[CrossRef]

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys. 75(8), 4022–4031 (1994).
[CrossRef]

Güdel, H. U.

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33(4), 235–242 (2000).
[CrossRef] [PubMed]

Guillaume, J.-C.

P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Guo, Y.

Guo, Z.

Gutller, G.

G. Gutller and H. Queisser, “Impurity photovoltaic effect in silicon,” Energy Convers. 10(2), 51–55 (1970).
[CrossRef]

Guttowski, A.

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Hallermann, F.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

Hänni, S.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Hauser, H.

Hermle, M.

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Hua, X.

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
[CrossRef] [PubMed]

Huang, Z. G.

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
[CrossRef] [PubMed]

Hummelen, J. C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

Jamois, C.

Jee, S. W.

John, S.

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[CrossRef]

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6, 2972–2983 (2013).

S. John, “Why trap light?” Nat. Mater. 11(12), 997–999 (2012).
[CrossRef] [PubMed]

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074326 (2012).
[CrossRef]

A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074327 (2012).
[CrossRef]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jung, J. Y.

Jung, K.-Y.

Keevers, M. J.

M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys. 75(8), 4022–4031 (1994).
[CrossRef]

Kimerling, L. C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Kramer, K. W.

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Krämer, K. W.

Lamorte, M. F.

M. F. Lamorte and D. Abbot, “Analysis of AlGaAs–GaInAs cascade solar cell under AM0–AM5 spectra,” Solid-State Electron. 22(5), 467–473 (1979).
[CrossRef]

Le, K. Q.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

Ledemi, Y.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Lee, J. H.

Li, X.

Lin, C.

Lin, X. X.

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
[CrossRef] [PubMed]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Liu, X.

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

Loper, P.

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Luque, A.

Maduro, J. A.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

Maes, B.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Martí, A.

Meier, M.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Meillaud, F.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Mellor, A.

Meng, X.

Messaddeq, Y.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Michaelis, D.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Moulin, E.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Nann, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Niv, A.

Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys. 109(11), 114905 (2011).
[CrossRef]

Paetzold, U. W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Pantato, J. V.

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

Parascandolo, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Park, K. T.

Peters, M.

Polman, A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Poulain, M.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Povinelli, M. L.

Pshenichnikov, M. S.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

Queisser, H.

G. Gutller and H. Queisser, “Impurity photovoltaic effect in silicon,” Energy Convers. 10(2), 51–55 (1970).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Rai, V. K.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Rath, J. K.

F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys. 89(7), 4010 (2001).
[CrossRef]

Rau, U.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Reano, R. M.

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Ren, R.

Richards, B. S.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[CrossRef]

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

Rubinelli, F. A.

F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys. 89(7), 4010 (2001).
[CrossRef]

Saga, T.

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[CrossRef]

Schietinger, S.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys. 89(7), 4010 (2001).
[CrossRef]

Seassal, C.

Shalav, A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[CrossRef]

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

Shen, H.

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Shen, W. Z.

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
[CrossRef] [PubMed]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

Steinkemper, H.

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

Teixeira, F. L.

Tobías, I.

Trompoukis, C.

Trupke, T.

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

Turner, G. W.

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

Um, H. D.

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

van Veggel, F. C. J. M.

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[CrossRef] [PubMed]

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

Visser, C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

von Plessen, G.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

Wächter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

Wang, F.

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

Wang, H.-Q.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Wang, N.

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wellens, C.

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wurfel, P.

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Zahraman, K.

P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Zhang, X.

Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys. 109(11), 114905 (2011).
[CrossRef]

Zhang, X. H.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Zhou, K.

Zhu, R.

Zou, W.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

Acc. Chem. Res. (1)

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33(4), 235–242 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett. 44(6), 632–634 (1984).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

Energy Convers. (1)

G. Gutller and H. Queisser, “Impurity photovoltaic effect in silicon,” Energy Convers. 10(2), 51–55 (1970).
[CrossRef]

Energy Environ. Sci. (1)

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6, 2972–2983 (2013).

IEEE J. Photovolt. (1)

J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt. 2(2), 134–140 (2012).
[CrossRef]

J. Appl. Phys. (14)

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys. 103(9), 093526 (2008).
[CrossRef]

Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys. 109(11), 114905 (2011).
[CrossRef]

S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[CrossRef]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys. 113(15), 154315 (2013).
[CrossRef]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[CrossRef]

G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074326 (2012).
[CrossRef]

A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys. 112(7), 074327 (2012).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys. 75(8), 4022–4031 (1994).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[CrossRef]

F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys. 89(7), 4010 (2001).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (2)

A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt. 14(2), 024008 (2012).
[CrossRef]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Rare Earths (1)

Y. C. Chen and T. M. Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb, R (R=Er, Ho) phosphors,” J. Rare Earths 29(8), 723–726 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996).
[CrossRef]

Nano Lett. (5)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Nanoscale (1)

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology 24(23), 235402 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. John, “Why trap light?” Nat. Mater. 11(12), 997–999 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[CrossRef]

NPG Asia Mater. (1)

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[CrossRef]

Opt. Express (7)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5), A1148–A1154 (2011).
[CrossRef] [PubMed]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[CrossRef] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[CrossRef] [PubMed]

K. Zhou, Z. Guo, X. Li, J. Y. Jung, S. W. Jee, K. T. Park, H. D. Um, N. Wang, and J. H. Lee, “The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector,” Opt. Express 20(S5Suppl 5), A777–A787 (2012).
[CrossRef] [PubMed]

A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express 21(S2Suppl 2), A295–A304 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78(2), 023825 (2008).
[CrossRef]

Phys. Rev. B (2)

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5) 821– 826(2013).
[CrossRef]

Sol. Cells (1)

J. C. C. Fan, “The future of high efficiency solar cells,” Sol. Cells 12(1-2), 51–62 (1984).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[CrossRef]

Solid-State Electron. (1)

M. F. Lamorte and D. Abbot, “Analysis of AlGaAs–GaInAs cascade solar cell under AM0–AM5 spectra,” Solid-State Electron. 22(5), 467–473 (1979).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

M. Green, Third Generation Photovoltaics (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A unit cell of the combined plasmonic and photonic crystal silicon solar cell structure based on a square lattice of slanted conical-pores in silicon and metallic core-shell rings. The up-conversion layer, in which the up-converter is doped, is sandwiched between the slanted cone PC and the Ag back reflector. The plasmonic core-shell ring resonator is integrated inside the up-conversion layer.

Fig. 2
Fig. 2

The MAPD of the cell (from above-bandgap solar absorption) with and without the up-conversion (UC) buffer layer as a function of the buffer layer thickness.

Fig. 3
Fig. 3

(a) The absorption spectra of (i) the bare slanted conical pore photonic crystal-based solar cell without the UC layer (black line) and (ii) the cell with the UC layer (red line), (iii) with both the UC layer and the core-shell ring (blue line), and (iv) the Lambertian statistical ray trapping limit (green line). (b) The absorption loss as a function of wavelength in the back reflector of (i) the bare cell without the UC layer (black line), (ii) the cell with the UC layer only (red line) and (iii) the cell having both the UC layer and the core-shell ring (blue line).

Fig. 4
Fig. 4

Short circuit current optimization for the slanted conical pore PC cell with lattice constant a = 850 nm, cone radius R = 425 nm, and up-conversion layer thickness tuc = 60 nm for various core-shell ring geomeries: (a) MAPD as a function of inner radius for fixed ring thickness tr = 35 nm (b) MAPD as a function of ring thickness for fixed inner ring radius Ri = 120 nm. The maximum short circuit current is obtained for inner ring radius Ri = 120 nm and thickness tr = 35 nm.

Fig. 5
Fig. 5

Normalized electric field intensity at certain wavelengths in the chosen xz plane and yz plane view, respectively. The peak intensity enhancement in the photonic crystal at 750 nm and 1032 nm is about 100 and 200, respectively.

Fig. 6
Fig. 6

The MAPD of slanted concial pore PC’s as function of pore depth with and without plasmonic core-shell ring resonators. Here the ratio of pore height to equivalent bulk thickness of silicon is about 1.6. On the same graph, we plot the Lambertian limit for (nonporous) films of thickness equal to the pore height/F where F~1.6. In other words, the Lambertian films contain an equal amount of silicon to the photonic crystal films to which they are directly compared. At the pore height of 800 nm (500 nm of Si), the MAPD is reduced by only about 5% from the MAPD at the pore height of 1600 nm (1 micron of Si). This suggests the possibility of high-efficiency, thin-film silicon solar cells with equivalent bulk thickness of 500 nm.

Fig. 7
Fig. 7

Angular response in term of the MAPD of the slanted conical pore PC cell with and without plasmonic core-shell ring resonators for TE- and TM-polarized light illuminations.

Fig. 8
Fig. 8

Ratio of the sub-bandgap solar absorption (integrated over the up-conversion volume) in the 60 nm thick up-conversion layer with and without the plasmonic core-shell ring resonator.

Fig. 9
Fig. 9

Normalized electric field intensity in the up-conversion layer caused by the core-shell ring at resonant wavelengths of 1350 nm and 1500 nm. The peak intensity ratio for 1500 nm is about 1400. Here |E0|2 is the incident solar intensity at the chosen wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A E Int = 300nm 1100nm A( λ )×AM1.5G ( λ )dλ 300nm 1100nm AM1.5G ( λ )dλ .
MAPD= 300nm 1100nm eλ hc A( λ )×AM1.5G ( λ )dλ.

Metrics