Abstract

A high-aspect-ratio metallic rod array is demonstrated to generate and propagate highly confined terahertz (THz) surface plasmonic waves under end-fire excitation. The transverse modal power distribution and spectral properties of the bound THz plasmonic wave are characterized in two metallic rod arrays with different periods and in two configurations with and without attaching a subwavelength superstrate. The integrated metallic rod array–based waveguide can be used to sense the various thin films deposited on the polypropylene superstrate based on the phase-sensitive mechanism. The sensor exhibits different phase detection sensitivities depending on the modal power immersed in the air gaps between the metallic rods. Deep-subwavelength SiO2 and ZnO nanofilms with an optical path difference of 252 nm, which is equivalent to λ/3968 at 0.300 THz, are used as analytes to test the integrated plasmonic waveguide. Analysis of the refractive index and thickness of molecular membranes indicates that the metallic rod array–based THz waveguide can integrate various biochip platforms for minute molecular detection, which is extremely less than the coherent length of THz waves.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [CrossRef] [PubMed]
  2. M. C. Schaafsma, J. G. Rivas, “Semiconductor plasmonic crystals: active control of THz extinction,” Semicond. Sci. Technol. 28(12), 124003 (2013).
    [CrossRef]
  3. T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
    [CrossRef]
  4. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  5. L. Shen, X. Chen, T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
    [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  7. J.-T. Kim, J.-J. Ju, S. Park, M.-S. Kim, S.-K. Park, M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
    [CrossRef] [PubMed]
  8. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [CrossRef]
  9. S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  10. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  11. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  12. R. E. Kunz, K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
    [CrossRef] [PubMed]
  13. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
    [CrossRef]
  14. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
    [CrossRef] [PubMed]
  15. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
    [CrossRef] [PubMed]
  16. J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
    [CrossRef]
  17. M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
    [CrossRef]
  18. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [CrossRef] [PubMed]
  19. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
    [CrossRef]
  20. J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [CrossRef] [PubMed]
  21. Bahaa, E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (New York, Wiley, 1991), Chap. 7.
  22. W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007).
    [CrossRef]
  23. A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006).
    [CrossRef]

2013 (2)

M. C. Schaafsma, J. G. Rivas, “Semiconductor plasmonic crystals: active control of THz extinction,” Semicond. Sci. Technol. 28(12), 124003 (2013).
[CrossRef]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[CrossRef] [PubMed]

2010 (3)

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
[CrossRef] [PubMed]

2009 (1)

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

2008 (4)

T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

L. Shen, X. Chen, T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
[CrossRef] [PubMed]

J.-T. Kim, J.-J. Ju, S. Park, M.-S. Kim, S.-K. Park, M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

2007 (3)

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007).
[CrossRef]

2006 (5)

A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. E. Kunz, K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef] [PubMed]

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

1983 (2)

Alexander, R. W.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Azad, A. K.

A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006).
[CrossRef]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Birch, P. M.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Budgett, D. M.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Chatwin, C. R.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Chen, W.

W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007).
[CrossRef]

Chen, X.

Chen, Y.

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Choi, J.-W.

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

Choi, K.-H.

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

Chung, I.

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

Claret-Tournier, F.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Cottier, K.

R. E. Kunz, K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dupuis, A.

Earley, S.

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Farsari, M.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Ferguson, B.

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Garcia-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Garetz, B. A.

Gramotnev, D. K.

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Gu, J. F.

Ha, C.-S.

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Han, J.

A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006).
[CrossRef]

Hendry, E.

T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

Huang, S.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

Ito, H.

Ju, J.-J.

Khosrofian, J. M.

Kim, J.-T.

Kim, M.-S.

Kirihara, S.

W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007).
[CrossRef]

Kunz, R. E.

R. E. Kunz, K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[CrossRef]

Lee, M.-H.

Lee, S.-H.

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

Link, S.

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Liu, H.-B.

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Liu, T.-A.

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[CrossRef] [PubMed]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

Long, L. L.

Lu, J.-Y.

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[CrossRef] [PubMed]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Martin-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Mazhorova, A.

Minamide, H.

Miyamoto, Y.

W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007).
[CrossRef]

Morandotti, R.

Ordal, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pan, C.-L.

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

Park, S.

Park, S.-K.

Peccianti, M.

Peng, J.-L.

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[CrossRef] [PubMed]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

Plopper, G.

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Richardson, J. D.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Rivas, J. G.

M. C. Schaafsma, J. G. Rivas, “Semiconductor plasmonic crystals: active control of THz extinction,” Semicond. Sci. Technol. 28(12), 124003 (2013).
[CrossRef]

Schaafsma, M. C.

M. C. Schaafsma, J. G. Rivas, “Semiconductor plasmonic crystals: active control of THz extinction,” Semicond. Sci. Technol. 28(12), 124003 (2013).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Shen, L.

Skorobogatiy, M.

Tang, M.

Tsuneyuki, O.

Wang, Y.

Ward, C. A.

Wicker, R.

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Yang, T.-J.

You, B.

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[CrossRef] [PubMed]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

Young, R. C. D.

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Zhang, W.

A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006).
[CrossRef]

Zhang, X.-C.

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Anal. Bioanal. Chem. (1)

R. E. Kunz, K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96(5), 051105 (2010).
[CrossRef]

A. K. Azad, J. Han, W. Zhang, “Terahertz dielectric properties of high-resistivity single-crystal ZnO,” Appl. Phys. Lett. 88(2), 021103 (2006).
[CrossRef]

T. H. Isaac, W. L. Barnes, E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[CrossRef] [PubMed]

J. Am. Ceram. Soc. (1)

W. Chen, S. Kirihara, Y. Miyamoto, “Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications,” J. Am. Ceram. Soc. 90(7), 2078–2081 (2007).
[CrossRef]

J. Mater. Process. Technol. (2)

J.-W. Choi, R. Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, I. Chung, “Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Technol. 209(15-16), 5494–5503 (2009).
[CrossRef]

M. Farsari, F. Claret-Tournier, S. Huang, C. R. Chatwin, D. M. Budgett, P. M. Birch, R. C. D. Young, J. D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(1-3), 167–172 (2000).
[CrossRef]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[CrossRef]

Nat. Photonics (3)

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

M. C. Schaafsma, J. G. Rivas, “Semiconductor plasmonic crystals: active control of THz extinction,” Semicond. Sci. Technol. 28(12), 124003 (2013).
[CrossRef]

Other (1)

Bahaa, E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (New York, Wiley, 1991), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Optical configuration of an MRA waveguide. Top-view microscopic photos of (b) 420 µm- and (c) 620 µm-period MRAs. Side-view microscopic photos of (d) 420 µm- and (e) 620 µm-period MRAs.

Fig. 2
Fig. 2

Measured transmittance of (a) 420 µm- and (b) 620 µm-Λ MRAs.

Fig. 3
Fig. 3

Measured Z-axial power distribution at the output end of a 420 µm-Λ MRA waveguide for (a) 0.226 THz and (b) 0.520 THz waves. Simulated cross power distributions in the X-Z plane of (c) 0.226 THz and (d) 0.520 THz waves at the output end of the waveguide. Simulated cross power distributions in the Y-Z plane for (e) 0.226 THz and (f) 0.520 THz waves.

Fig. 4
Fig. 4

Measured cross power distributions along the Z-direction and at the output end of a 620 µm-Λ MRA waveguide for (a) 0.226 THz, (b) 0.322 THz, and (c) 0.424 THz waves. (d) Side-view sketch of nanofilm sensing using the integrated MRA-based THz plasmonic waveguide.

Fig. 5
Fig. 5

(a) Electric field oscillations and (b) power spectra of THz waves propagated through a 420 µm-Λ MRA waveguide with and without attaching PP superstrates of various thicknesses.

Fig. 6
Fig. 6

(a) Peak power of the low- and high-frequency transmission bands denoted as the 1st and 2nd peaks, respectively, passing through a 420 µm-Λ MRA waveguide with PP superstrates of various thicknesses. (b) Schematic Z-axial power distribution of a 420 µm-Λ MRA waveguide top conjugated with a >90 µm-thick PP superstrate.

Fig. 7
Fig. 7

(a) Electric field oscillations and (b) power spectra of THz waves propagated through a 620 µm-Λ MRA waveguide with and without attaching PP-film superstrates of various thicknesses.

Fig. 8
Fig. 8

(a) Peak powers of the 1st and 2nd transmission bands shown in Fig. 7(b). (b) Schematic Z-axial power distribution of a 620 µm-Λ MRA waveguide top conjugated with a >90 µm-thick PP superstrate.

Fig. 9
Fig. 9

Phase retardations induced by PP superstrates on a 420 µm- and a 620 µm-Λ MRA waveguide for (a) 0.520 THz, (b) 0.424 THz, (c) 0.322 THz, and (d) 0.226 THz waves. (e) Phase detection sensitivities of a 420 µm- and a 620 µm-Λ MRA waveguide.

Fig. 10
Fig. 10

(a) Electric field oscillations of THz waves passing through a 620 µm-Λ MRA waveguide integrated in a 100 µm-thick PP substrate with and without nanofilm coating. (b) Detected phase retardations induced by SiO2 and ZnO nanofilms.

Metrics