Abstract

We report on the generation of vector vortex beams using a 10-μm core multimode liquid core optical fiber (LCOF) filled with CS2. The first higher-order modes including radially, azimuthally and hybrid polarized vector modes, as well as the higher-order modes such as LP21 mode and LP31 mode are selectively excited by adjusting the incidence angle of the linearly polarized input Gaussian beam with respect to the fiber axis. The interferograms with single forklet verify the phase singularity of the vector beams generated. Compared to silica optical fibers, the vector vortex beams from the LCOFs have higher excitation efficiency and larger bending tolerance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Ding, J. X. Pu, “The cross correlation function of partially coherent vortex beam,” Opt. Express 22(2), 1350–1358 (2014).
    [CrossRef] [PubMed]
  2. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
    [CrossRef] [PubMed]
  3. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [CrossRef] [PubMed]
  4. Z. Y. Wang, N. Zhang, X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011).
    [CrossRef] [PubMed]
  5. H. R. Li, J. P. Yin, “Generation of a vectorial Mathieu-like hollow beam with a periodically rotated polarization property,” Opt. Lett. 36(10), 1755–1757 (2011).
    [CrossRef] [PubMed]
  6. A. Lehmuskero, Y. M. Li, P. Johansson, M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
    [CrossRef] [PubMed]
  7. Y. J. Yang, Y. Dong, C. L. Zhao, Y. D. Liu, Y. J. Cai, “Autocorrelation properties of fully coherent beam with and without orbital angular momentum,” Opt. Express 22(3), 2925–2932 (2014).
    [CrossRef] [PubMed]
  8. P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, M. W. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39(3), 626–629 (2014).
    [CrossRef] [PubMed]
  9. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  10. Q. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [CrossRef] [PubMed]
  11. X. Hao, C. F. Kuang, T. T. Wang, X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
    [CrossRef] [PubMed]
  12. K. Huang, Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36(18), 3536–3538 (2011).
    [CrossRef] [PubMed]
  13. G. H. Yuan, S. B. Wei, X. C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36(17), 3479–3481 (2011).
    [CrossRef] [PubMed]
  14. N. K. Viswanathan, V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
    [CrossRef] [PubMed]
  15. V. V. G. K. Inavalli, N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283(6), 861–864 (2010).
    [CrossRef]
  16. Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
    [CrossRef]
  17. N. Bozinovic, S. Golowich, P. Kristensen, S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
    [CrossRef] [PubMed]
  18. T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
    [CrossRef]
  19. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express 19(15), 14420–14425 (2011).
    [CrossRef] [PubMed]
  20. F. F. Dai, Y. H. Xu, X. F. Chen, “Tunable and low bending loss of liquid-core fiber,” Chin. Opt. Lett. 8(1), 14–17 (2010).
    [CrossRef]
  21. K. Kieu, L. Schneebeli, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, N. Peyghambarian, “All-optical switching based on inverse Raman scattering in liquid-core optical fibers,” Opt. Lett. 37(5), 942–944 (2012).
    [CrossRef] [PubMed]
  22. K. Kieu, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20(7), 8148–8154 (2012).
    [CrossRef] [PubMed]
  23. K. Kieu, D. Churin, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Brillouin lasing in integrated liquid-core optical fibers,” Opt. Lett. 38(4), 543–545 (2013).
    [CrossRef] [PubMed]
  24. O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, N. Peyghambarian, “Raman-induced frequency shift in CS2-filled integrated,” Opt. Commun. 318, 83–87 (2014).
    [CrossRef]
  25. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [CrossRef]
  26. A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986).
    [CrossRef]
  27. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  28. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [CrossRef] [PubMed]
  29. W. Gao, X. B. Hu, D. Sun, J. Y. Li, “Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber,” Opt. Express 20(18), 20715–20720 (2012).
    [CrossRef] [PubMed]
  30. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38(5), 600–602 (2013).
    [CrossRef] [PubMed]
  31. T. Murao, K. Saitoh, M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009).
    [CrossRef] [PubMed]
  32. K. Nagano, S. Kawakami, S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17(13), 2080–2085 (1978).
    [CrossRef] [PubMed]

2014 (5)

2013 (3)

2012 (6)

2011 (5)

2010 (4)

2009 (3)

2006 (1)

2005 (1)

T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

2002 (1)

1986 (1)

A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986).
[CrossRef]

1978 (1)

Abdolvand, A.

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[CrossRef] [PubMed]

Bozinovic, N.

Cai, Y. J.

Chen, X. F.

Chujo, K.

Churin, D.

Courjon, D.

T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Dai, F. F.

DeSimone, A.

Dimarcello, F. V.

Ding, P. F.

Dong, Y.

Erokhin, A. I.

A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986).
[CrossRef]

Euser, T. G.

Faizullov, F. S.

A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986).
[CrossRef]

Fang, Z. Q.

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

Gao, W.

Ghalmi, S.

Giessen, H.

Gissibl, T.

Golowich, S.

Grosjean, T.

T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Hales, J. M.

Hamazaki, J.

Hao, X.

Herrera, O. D.

O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, N. Peyghambarian, “Raman-induced frequency shift in CS2-filled integrated,” Opt. Commun. 318, 83–87 (2014).
[CrossRef]

Hirose, T.

Hu, X. B.

Huang, K.

Inavalli, V. V. G. K.

V. V. G. K. Inavalli, N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283(6), 861–864 (2010).
[CrossRef]

N. K. Viswanathan, V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
[CrossRef] [PubMed]

Johansson, P.

Käll, M.

Kang, M. Q.

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

Kawakami, S.

Kedenburg, S.

Kieu, K.

Kobayashi, Y.

Koshiba, M.

Kovalev, V. I.

A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986).
[CrossRef]

Koyama, M.

Kristensen, P.

Kuang, C. F.

Leger, J. R.

Lehmuskero, A.

Li, H. R.

Li, J. L.

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

Li, J. Y.

Li, Y.

Li, Y. M.

Liu, X.

Liu, Y. D.

Maccalli, S.

Maffei, B.

Merzlyak, E.

Miyamoto, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[CrossRef] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express 19(15), 14420–14425 (2011).
[CrossRef] [PubMed]

Monberg, E.

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[CrossRef] [PubMed]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[CrossRef] [PubMed]

Murao, T.

Nagano, K.

Ng, M. W.

Nicholson, J. W.

Nishida, S.

Norwood, R. A.

Okida, M.

Omatsu, T.

Perry, J. W.

Peyghambarian, N.

Pisano, G.

Pu, J. X.

Ramachandran, S.

Russell, P. St. J.

Sabac, A.

T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Saitoh, K.

Schemmel, P.

Schneebeli, L.

Sun, D.

Tanda, S.

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[CrossRef] [PubMed]

Trabold, B. M.

Ueda, K.

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

Vieweg, M.

Viswanathan, N. K.

V. V. G. K. Inavalli, N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283(6), 861–864 (2010).
[CrossRef]

N. K. Viswanathan, V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
[CrossRef] [PubMed]

Walser, A. M.

Wang, T. T.

Wang, Z. Y.

Wei, S. B.

Wisk, P.

Xia, K. G.

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

Xu, Y. H.

Yan, M. F.

Yang, Y. J.

Yao, Y.

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

Yin, J. P.

Yuan, G. H.

Yuan, X. C.

Zhan, Q.

Zhang, N.

Zhao, C. L.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[CrossRef] [PubMed]

Opt. Commun. (4)

V. V. G. K. Inavalli, N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283(6), 861–864 (2010).
[CrossRef]

Z. Q. Fang, Y. Yao, K. G. Xia, M. Q. Kang, K. Ueda, J. L. Li, “Vector mode excitation in few-mode fiber by controlling incident polarization,” Opt. Commun. 294, 177–181 (2013).
[CrossRef]

T. Grosjean, A. Sabac, D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, N. Peyghambarian, “Raman-induced frequency shift in CS2-filled integrated,” Opt. Commun. 318, 83–87 (2014).
[CrossRef]

Opt. Express (10)

P. F. Ding, J. X. Pu, “The cross correlation function of partially coherent vortex beam,” Opt. Express 22(2), 1350–1358 (2014).
[CrossRef] [PubMed]

Y. J. Yang, Y. Dong, C. L. Zhao, Y. D. Liu, Y. J. Cai, “Autocorrelation properties of fully coherent beam with and without orbital angular momentum,” Opt. Express 22(3), 2925–2932 (2014).
[CrossRef] [PubMed]

A. Lehmuskero, Y. M. Li, P. Johansson, M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[CrossRef] [PubMed]

Z. Y. Wang, N. Zhang, X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011).
[CrossRef] [PubMed]

K. Kieu, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20(7), 8148–8154 (2012).
[CrossRef] [PubMed]

W. Gao, X. B. Hu, D. Sun, J. Y. Li, “Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber,” Opt. Express 20(18), 20715–20720 (2012).
[CrossRef] [PubMed]

Q. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009).
[CrossRef] [PubMed]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[CrossRef] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express 19(15), 14420–14425 (2011).
[CrossRef] [PubMed]

Opt. Lett. (11)

G. H. Yuan, S. B. Wei, X. C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36(17), 3479–3481 (2011).
[CrossRef] [PubMed]

K. Huang, Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36(18), 3536–3538 (2011).
[CrossRef] [PubMed]

K. Kieu, L. Schneebeli, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, N. Peyghambarian, “All-optical switching based on inverse Raman scattering in liquid-core optical fibers,” Opt. Lett. 37(5), 942–944 (2012).
[CrossRef] [PubMed]

X. Hao, C. F. Kuang, T. T. Wang, X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[CrossRef] [PubMed]

N. K. Viswanathan, V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
[CrossRef] [PubMed]

K. Kieu, D. Churin, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Brillouin lasing in integrated liquid-core optical fibers,” Opt. Lett. 38(4), 543–545 (2013).
[CrossRef] [PubMed]

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38(5), 600–602 (2013).
[CrossRef] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[CrossRef] [PubMed]

H. R. Li, J. P. Yin, “Generation of a vectorial Mathieu-like hollow beam with a periodically rotated polarization property,” Opt. Lett. 36(10), 1755–1757 (2011).
[CrossRef] [PubMed]

P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, M. W. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39(3), 626–629 (2014).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Sov. J. Quantum Electron. (1)

A. I. Erokhin, V. I. Kovalev, F. S. Faĭzullov, “Determination of the parameters of a nonlinear response of liquids in an acoustic response region by the method of nondegenerate four-wave interaction,” Sov. J. Quantum Electron. 16(7), 872–877 (1986).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. P1,2, polarizers; BS1,2, beam splitters; L1,2, lenses; LCOF, liquid core optical fiber; M1,2, mirrors.

Fig. 2
Fig. 2

Near-field images of the intensity distribution of the fundamental mode and higher-order modes. (a) LP01 mode; (b) doughnut LP11 mode; (c) two-lobe LP11 mode; (d) LP21 mode.

Fig. 3
Fig. 3

Interferogram generated by combining the doughnut LP11 mode with a plane reference beam.

Fig. 4
Fig. 4

Near-field images of the intensity distribution of the doughnut LP11 modes with different polarizations (Column 1), corresponding intensity profiles after passing a polarizer orientated in the direction of the arrow (Column 2-5) and corresponding polarization patterns (Column 6). (a) hybrid polarized HE21 mode; (b) radially polarized TM01 mode; (c) azimuthally polarized TE01 mode.

Fig. 5
Fig. 5

Near field patterns of the doughnut LP11 modes generated by the LCOF for different bending radius. (a) straight fiber; (b) 7cm; (c) 5cm; (d) 3cm.

Fig. 6
Fig. 6

Near field patterns of (a) the doughnut LP11 modes generated by the silica optical fiber and (b) two-beam interferogram, (c) is locally linear amplification of the forklet interferogram.

Fig. 7
Fig. 7

Near field patterns of the doughnut LP11 modes generated by the silica optical fiber for different bending radius. (a) straight fiber; (b) 7cm; (c) 5cm; (d) 3cm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n R (x)=n(x)( 1+ x R )

Metrics