Abstract

Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

© 2014 Optical Society of America

Full Article  |  PDF Article

Errata

Rudolf Weber, Thomas Graf, Peter Berger, Volkher Onuseit, Margit Wiedenmann, Christian Freitag, and Anne Feuer, "Heat accumulation during pulsed laser materials processing: erratum," Opt. Express 22, 28232-28233 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-23-28232

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [CrossRef] [PubMed]
  2. H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
    [CrossRef]
  3. W. Schulz, U. Eppelt, R. Poprawe, “Review on laser drilling I. Fundamentals, modeling, and simulation,” J. Laser Appl. 25(1), 012006 (2013).
    [CrossRef]
  4. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [CrossRef]
  5. D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).
  6. T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
    [CrossRef]
  7. R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
    [CrossRef]
  8. R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
    [CrossRef]
  9. B. Neuenschwander, B. Jaeggi, M. Schmid, U. Hunziker, B. Luescher, and C. Nocera, “Processing of industrially relevant non-metals with laser pulses in the range between 10ps and 50ps,” in Proceedings of the International Congress on Applications of Lasers & Electro-Optics (ICALEO), Paper M (Vol. 103) (2011).
  10. M. Kraus, C. Markmann, A. Michalowski, R. Weber, and T. Graf, “Gas-assisted microdrilling in steel with ultrashort pulsed laser radiation,” in LPM2010, Stuttgart, June 7- June 10 (2010).
  11. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
    [CrossRef] [PubMed]
  12. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  13. R. R. Gattass, L. R. Cerami, E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006).
    [CrossRef] [PubMed]
  14. R. Weber, V. Onuseit, S. Tscheulin, and T. Graf, “High-efficiency laser processing of CFRP,” in Proc. ICALEO 2013 (2013), Paper LMP 1901.
  15. T. Tamaki, W. Watanabe, K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [CrossRef] [PubMed]
  16. A. A. Cenna, P. Mathew, “Evaluation of cut quality of fibre-reinforced plastic – a review,” Int. J. Mach. Tools Manuf. 37(6), 723–736 (1997).
    [CrossRef]
  17. D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
    [CrossRef]
  18. A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
    [CrossRef]
  19. A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011).
    [CrossRef]
  20. R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).
  21. R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
    [CrossRef]
  22. H. Deutsche Edelstahlwerke Gmb, Werkstoffdatenblatt 1.4301_de.pdf, http://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4301_de.pdf .
  23. D. E. Kline, “Thermal Conductivity Studies of Polymers,” J. Polym. Sci., Polym. Phys. Ed. 1, 441–450 (1961).
  24. S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
    [CrossRef]
  25. P. Morgan, Carbon Fibers and Their Composites (CRC Press, 2005), p. 121.
  26. M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
    [CrossRef]
  27. C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
    [CrossRef]
  28. R. Rolfes, U. Hammerschmidt, “Transverse thermal conductivity of CFRP laminates; a numerical and experimental validation of approximation formulae,” Compos. Sci. Technol. 54(1), 45–54 (1995).
    [CrossRef]
  29. F. R. Barnet, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
    [CrossRef]
  30. N. N. Rykalin, Die Wärmegrundlagen des Schweißvorgangs (VEB Verlag Technik, 1957).
  31. D. Radaj, Heat Effects of Welding, Temperature Field, Residual Stress, Distortion (Springer, 1992).
  32. M. Hafner, R. Weber, and T. Graf, “Modeling of laser ablation of CFRP - influence of beam profile,” Stuttgarter Lasertage SLT 12, Neue Messe Stuttgart (2012).
  33. C. Freitag, R. Weber, T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Opt. Express 22(2), 1474–1479 (2014).
    [CrossRef] [PubMed]
  34. T. Graf, R. Weber, V. Onuseit, M. Hafner, C. Freitag, and A. Feuer, “Laser applications from production to machining of composite materials,” in EALA 2012 (2012).

2014

2013

2012

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

2011

A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011).
[CrossRef]

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

2010

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

2009

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

2008

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

2006

2005

1999

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

1998

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

1997

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[CrossRef]

D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).

A. A. Cenna, P. Mathew, “Evaluation of cut quality of fibre-reinforced plastic – a review,” Int. J. Mach. Tools Manuf. 37(6), 723–736 (1997).
[CrossRef]

1995

R. Rolfes, U. Hammerschmidt, “Transverse thermal conductivity of CFRP laminates; a numerical and experimental validation of approximation formulae,” Compos. Sci. Technol. 54(1), 45–54 (1995).
[CrossRef]

1990

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

1979

M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
[CrossRef]

1976

F. R. Barnet, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

1961

D. E. Kline, “Thermal Conductivity Studies of Polymers,” J. Polym. Sci., Polym. Phys. Ed. 1, 441–450 (1961).

Abdou Ahmed, M.

Abdou-Ahmed, M.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Ancona, A.

Arai, A.

Banfield, L.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

Barnet, F. R.

F. R. Barnet, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Batsale, J. C.

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

Bauer, D.

Berger, P.

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

Beyer, E.

A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011).
[CrossRef]

Black, M. A.

M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
[CrossRef]

Bovatsek, J.

Callies, G.

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

Cenna, A. A.

A. A. Cenna, P. Mathew, “Evaluation of cut quality of fibre-reinforced plastic – a review,” Int. J. Mach. Tools Manuf. 37(6), 723–736 (1997).
[CrossRef]

Cerami, L. R.

Chichkov, B. N.

Danielius, R.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Darby, M. I.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

Dausinger, F.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Dilhaire, S.

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

Döring, S.

Eaton, S.

Emmelmann, C.

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

Eppelt, U.

W. Schulz, U. Eppelt, R. Poprawe, “Review on laser drilling I. Fundamentals, modeling, and simulation,” J. Laser Appl. 25(1), 012006 (2013).
[CrossRef]

Freitag, C.

C. Freitag, R. Weber, T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Opt. Express 22(2), 1474–1479 (2014).
[CrossRef] [PubMed]

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

Garnov, S. V.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Gattass, R. R.

Gillner, A.

D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).

Goeke, A.

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

Goyhénèche, J. M.

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

Graf, T.

C. Freitag, R. Weber, T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Opt. Express 22(2), 1474–1479 (2014).
[CrossRef] [PubMed]

J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[CrossRef] [PubMed]

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).

Haferkamp, H.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Hafner, M.

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).

Hammerschmidt, U.

R. Rolfes, U. Hammerschmidt, “Transverse thermal conductivity of CFRP laminates; a numerical and experimental validation of approximation formulae,” Compos. Sci. Technol. 54(1), 45–54 (1995).
[CrossRef]

Hauser, M.

A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011).
[CrossRef]

Hellrung, D.

D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).

Herman, P.

Herzog, D.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Hügel, H.

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

Itoh, K.

Jacobs, H.

Jaeschke, P.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Jasper, K.

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

Jauregui, C.

Killi, A.

King, R.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

Kline, D. E.

D. E. Kline, “Thermal Conductivity Studies of Polymers,” J. Polym. Sci., Polym. Phys. Ed. 1, 441–450 (1961).

Klotzbach, A.

A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011).
[CrossRef]

Kononenko, T.

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

Kononenko, T. V.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Konov, V. I.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Kraus, M.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Limpert, J.

Mathew, P.

A. A. Cenna, P. Mathew, “Evaluation of cut quality of fibre-reinforced plastic – a review,” Int. J. Mach. Tools Manuf. 37(6), 723–736 (1997).
[CrossRef]

Mazur, E.

McIvor, S. D.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

Meier, O.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Michalowksi, A.

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

Michalowski, A.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).

Momma, C.

Mucha, P.

R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).

Negel, J.-P.

Nolte, S.

Norr, M. K.

F. R. Barnet, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Onuseit, V.

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Pailler, R.

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

Pilling, M. W.

M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
[CrossRef]

Piskarskas, A.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Poprawe, R.

W. Schulz, U. Eppelt, R. Poprawe, “Review on laser drilling I. Fundamentals, modeling, and simulation,” J. Laser Appl. 25(1), 012006 (2013).
[CrossRef]

D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).

Pradere, C.

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

Rolfes, R.

R. Rolfes, U. Hammerschmidt, “Transverse thermal conductivity of CFRP laminates; a numerical and experimental validation of approximation formulae,” Compos. Sci. Technol. 54(1), 45–54 (1995).
[CrossRef]

Rominger, V.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Röser, F.

Schittenhelm, H.

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

Schulz, W.

W. Schulz, U. Eppelt, R. Poprawe, “Review on laser drilling I. Fundamentals, modeling, and simulation,” J. Laser Appl. 25(1), 012006 (2013).
[CrossRef]

Shah, L.

Sutter, D.

Tamaki, T.

Tamosauskas, G.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Tattersall, P.

M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
[CrossRef]

Tünnermann, A.

Voss, A.

Watanabe, W.

Webb, A.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

Weber, R.

C. Freitag, R. Weber, T. Graf, “Polarization dependence of laser interaction with carbon fibers and CFRP,” Opt. Express 22(2), 1474–1479 (2014).
[CrossRef] [PubMed]

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).

Wellegehausen, B.

Welling, H.

Wostenholm, G. H.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

Yates, B.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
[CrossRef]

Yoshino, F.

Zhang, H.

Carbon

C. Pradere, J. C. Batsale, J. M. Goyhénèche, R. Pailler, S. Dilhaire, “Thermal properties of carbon fibers at very high temperature,” Carbon 47(3), 737–743 (2009).
[CrossRef]

Compos. Sci. Technol.

R. Rolfes, U. Hammerschmidt, “Transverse thermal conductivity of CFRP laminates; a numerical and experimental validation of approximation formulae,” Compos. Sci. Technol. 54(1), 45–54 (1995).
[CrossRef]

Composites

F. R. Barnet, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Int. J. Mach. Tools Manuf.

A. A. Cenna, P. Mathew, “Evaluation of cut quality of fibre-reinforced plastic – a review,” Int. J. Mach. Tools Manuf. 37(6), 723–736 (1997).
[CrossRef]

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

J. Laser Appl.

H. Hügel, H. Schittenhelm, K. Jasper, G. Callies, P. Berger, “Structuring with excimer lasers - experimental and theoretical investigations on quality and efficiency,” J. Laser Appl. 10(6), 255–264 (1998).
[CrossRef]

W. Schulz, U. Eppelt, R. Poprawe, “Review on laser drilling I. Fundamentals, modeling, and simulation,” J. Laser Appl. 25(1), 012006 (2013).
[CrossRef]

J. Mater. Sci.

S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, A. Webb, “Thermal conductivity measurements of some glass fibre- and carbon fibre-reinforced plastics,” J. Mater. Sci. 25(7), 3127–3132 (1990).
[CrossRef]

M. W. Pilling, B. Yates, M. A. Black, P. Tattersall, “The thermal conductivity of carbon fibre-reinforced composites,” J. Mater. Sci. 14(6), 1326–1338 (1979).
[CrossRef]

J. Opt. Soc. Am. B

J. Polym. Sci., Polym. Phys. Ed.

D. E. Kline, “Thermal Conductivity Studies of Polymers,” J. Polym. Sci., Polym. Phys. Ed. 1, 441–450 (1961).

Opt. Express

Opt. Lett.

Phys. Procedia

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

R. Weber, C. Freitag, T. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

Phys. Procedia.

A. Klotzbach, M. Hauser, E. Beyer, “Laser cutting of carbon fibre reinforced polymers using highly brilliant laser beam sources,” Phys. Procedia. 12, 572–577 (2011).
[CrossRef]

Proc. Lasers Mater. Processing Laser

D. Hellrung, A. Gillner, R. Poprawe, “Laser beam removal of micro-structures with Nd: YAG lasers,” Proc. Lasers Mater. Processing Laser 97, 267–273 (1997).

Quantum Electron.

T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29(8), 724–728 (1999).
[CrossRef]

Other

B. Neuenschwander, B. Jaeggi, M. Schmid, U. Hunziker, B. Luescher, and C. Nocera, “Processing of industrially relevant non-metals with laser pulses in the range between 10ps and 50ps,” in Proceedings of the International Congress on Applications of Lasers & Electro-Optics (ICALEO), Paper M (Vol. 103) (2011).

M. Kraus, C. Markmann, A. Michalowski, R. Weber, and T. Graf, “Gas-assisted microdrilling in steel with ultrashort pulsed laser radiation,” in LPM2010, Stuttgart, June 7- June 10 (2010).

R. Weber, M. Hafner, A. Michalowski, P. Mucha, T. Graf, “Analysis of thermal damage in laser processing of CFRP,” in Proc. ICALEO 2011 (2011).

R. Weber, V. Onuseit, S. Tscheulin, and T. Graf, “High-efficiency laser processing of CFRP,” in Proc. ICALEO 2013 (2013), Paper LMP 1901.

H. Deutsche Edelstahlwerke Gmb, Werkstoffdatenblatt 1.4301_de.pdf, http://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4301_de.pdf .

N. N. Rykalin, Die Wärmegrundlagen des Schweißvorgangs (VEB Verlag Technik, 1957).

D. Radaj, Heat Effects of Welding, Temperature Field, Residual Stress, Distortion (Springer, 1992).

M. Hafner, R. Weber, and T. Graf, “Modeling of laser ablation of CFRP - influence of beam profile,” Stuttgarter Lasertage SLT 12, Neue Messe Stuttgart (2012).

T. Graf, R. Weber, V. Onuseit, M. Hafner, C. Freitag, and A. Feuer, “Laser applications from production to machining of composite materials,” in EALA 2012 (2012).

P. Morgan, Carbon Fibers and Their Composites (CRC Press, 2005), p. 121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM pictures of helically drilled holes in 1 mm thick CrNi-steel plates [10]. The upper pictures show the inlet, the lower the outlet of the drilling. The holes were drilled at the same average power of 10.3 W with a pulse duration of 6 ps and a focal spot diameter of 25 µm. The respective repetition rates (fL) and pulse energies (Ep) used for the drilling process are noted below each pair of pictures.

Fig. 2
Fig. 2

Geometry of the heat source and the dimension of the resulting temperature fields.

Fig. 3
Fig. 3

Temperature increase ΔT3D as a function of time for 0.1 µJ and 1 µJ of heat input in steel at the position of the heat source (left) and as a function of space for different instances of time after the heat deposition (right). The dashed lines indicate the evaporation temperature of CrNi-steel.

Fig. 4
Fig. 4

Temporal evolution of the temperature increase ΔTSum,3D on the surface of a semi-infinite body of CrNi-steel at the location of a point source for two different repetition rates and the same heat source energy of 5 µJ per pulse (a) or the same average power of 1.25 W, i.e. with a pulse energy of 25 µJ at 50 kHz and 5 µJ at 250 kHz (b).

Fig. 5
Fig. 5

Calculated temperature increase, ΔTHA,3D, caused by heat accumulation in CrNi-steel for the three laser parameters used to drill the holes shown in Fig. 1. The dashed line is the melting temperature of steel.

Fig. 6
Fig. 6

Sketch of the 1D heat flow along the fibers during cutting of CFRP.

Fig. 7
Fig. 7

Calculated temperature increase ∆T1D for the carbon fibers in CFRP (a) and the resulting cross-sections when CFRP is experimentally processed with the corresponding parameters.

Fig. 8
Fig. 8

Result of the Sum N=1 N t N nD/2 for the three cases nD[ 1,2,3 ] as a function of the number of pulses Nt.

Tables (1)

Tables Icon

Table 1 Material values used for the calculations in this paper.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

η Abs E Pulse = V Evap h Evap + Q Vapor + Q Heat
Q Heat = η Abs ( 1 η Th ) E Pulse = η Heat E Pulse
1D T 1D T 0 =Δ T 1D = Q 1D r c p 4pkt e r 2 4kt             ( r 2 = z 2 )
2D T 2D - T 0 =Δ T 2D = Q 2D r c p ( 4pkt ) 2 e - r 2 4kt          ( r 2 = x 2 + y 2 )
3D T 3D - T 0 =Δ T 3D = Q 3D r c p ( 4pkt ) 3 e - r 2 4kt          ( r 2 = x 2 + y 2 + z 2 )
1D Q 1D =2 Q Heat /A           ( in   J/m 2 )
2D Q 2D = Q Heat /                 ( in  J/m )
3D Q 3D =2 Q Heat               ( in  J )
nDim T nD - T 0 =Δ T nD = Q nD r c p ( 4pkt ) nD e - 1 t r nD 2 4k
Δ T nD ( t,N )= Q nD Θ( t- N-1 f L ) r c p ( 4pk( t- N-1 f L ) ) nD e - 1 ( t- N-1 f L ) r nD 2 4k
Δ T Sum,nD ( t )= N=1 N P Δ T nD ( t,N )
Δ T Sum,nD ( t )= Q nD ρ c p ( 4πκ ) nD N=1 N p Θ( t N1 f L ) ( t N1 f L ) nD e 1 ( t N1 f L ) r nD 2 4κ
Δ T HA,nD ( t= N t δ f L )= Q nD ρ c p ( 4πκ f L ) nD N=1 N p Θ( N t δN+1 ) ( N t δN+1 ) nD
Δ T HA,nD ( t= N p f L )= Q nD ρ c p ( 4πκ f L ) nD N=1 N p 1 N nD
Δ T Max 2 Q Heat ρ c p ( 4π κ f L ) 3 2.6
Δ T Max 5.2 η Heat ρ c p ( 4πκ ) 3 f L f L E Pulse
c FOM = ρ c p ( 4πκ ) 3 5.2
P  L Δ T Max c FOM f L η Heat

Metrics