Abstract

An ideal optical cavity operates by confining light in all three dimensions. We show that a cylindrical waveguide can provide the longitudinal confinement required to form a two dimensional cavity, described here as a self-formed cavity, by locating a dipole, directed along the waveguide, on the interface of the waveguide. The cavity resonance modes lead to peaks in the radiation of the dipole-waveguide system that have no contribution due to the skew rays that exist in longitudinally invariant waveguides and reduce their Q-factor. Using a theoretical model, we evaluate the Q-factor and modal volume of the cavity formed by a dipole-cylindrical-waveguide system and show that such a cavity allows access to both the strong and weak coupling regimes of cavity quantum electrodynamics.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
    [CrossRef]
  2. P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  4. D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
    [CrossRef]
  5. H. Schniepp, V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
    [CrossRef] [PubMed]
  6. S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [CrossRef] [PubMed]
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [CrossRef] [PubMed]
  9. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
    [CrossRef]
  10. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
    [CrossRef]
  11. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977).
    [CrossRef]
  12. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [CrossRef]
  13. M. Janowicz, W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
    [CrossRef] [PubMed]
  14. W. Żakowicz, M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
    [CrossRef]
  15. J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
    [CrossRef]
  16. D. Y. Chu, S.-T. Ho, “Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers,” J. Opt. Soc. Am. B 10, 381–390 (1993).
    [CrossRef]
  17. V. V. Klimov, M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
    [CrossRef]
  18. D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
    [CrossRef]
  19. D. J. Heinzen, M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
    [CrossRef] [PubMed]
  20. G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
    [CrossRef] [PubMed]
  21. K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
    [CrossRef]
  22. F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
    [CrossRef] [PubMed]
  23. F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [CrossRef]
  24. F. Le Kien, K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
    [CrossRef]
  25. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [CrossRef] [PubMed]
  26. M. R. Henderson, S. Afshar. V., A. D. Greentree, T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
    [CrossRef] [PubMed]
  27. M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
    [CrossRef] [PubMed]
  28. T. Schröder, M. Fujiwara, T. Noda, H. Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [CrossRef] [PubMed]
  29. R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [CrossRef] [PubMed]
  30. E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
    [CrossRef]
  31. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
    [CrossRef] [PubMed]
  32. V. Bordo, “Purcell factor for a cylindrical nanocavity: ab initio analytical approach,” J. Opt. Soc. Am. B 29, 1799–1809 (2012).
    [CrossRef]
  33. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  34. S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
    [CrossRef]
  35. C. Junge, S. Nickel, D. O’Shea, A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett. 36, 3488–3490 (2011).
    [CrossRef] [PubMed]
  36. A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).
  37. L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
    [CrossRef]
  38. K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
    [CrossRef]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  40. K. J. Rowland, S. Afshar. V, T. M. Monro, “Bandgaps and antiresonance integrated-arrows and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
    [CrossRef] [PubMed]
  41. F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef] [PubMed]
  42. I. M. White, H. Oveys, X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
    [CrossRef]
  43. I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  44. X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
    [CrossRef]
  45. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19, 21540–21551 (2011).
    [CrossRef] [PubMed]
  46. K. J. Rowland, A. Francois, P. Hoffmann, T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21, 11492–11505 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

2011 (6)

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[CrossRef]

2009 (1)

F. Le Kien, K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

2008 (3)

2006 (3)

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[CrossRef] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

2005 (3)

D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[CrossRef]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

2004 (3)

L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

V. V. Klimov, M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

2003 (3)

S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2002 (2)

H. Schniepp, V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

2000 (1)

W. Żakowicz, M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[CrossRef]

1998 (1)

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

1994 (1)

M. Janowicz, W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[CrossRef] [PubMed]

1993 (2)

F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[CrossRef] [PubMed]

D. Y. Chu, S.-T. Ho, “Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers,” J. Opt. Soc. Am. B 10, 381–390 (1993).
[CrossRef]

1991 (2)

G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
[CrossRef]

1987 (1)

D. J. Heinzen, M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[CrossRef] [PubMed]

1981 (1)

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

1979 (1)

1977 (2)

1946 (1)

E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
[CrossRef]

Afshar V., S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Afshar. V, S.

Afshar. V., S.

Aharonovich, I.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Balykin, V. I.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Barber, P. W.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

Becher, C.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Benson, O.

Berman, P.

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Björk, F.

F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[CrossRef] [PubMed]

Björk, G.

G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Bloch, J.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Bordo, V.

Borselli, M.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Chang, R. K.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

Chu, D. Y.

Ctyroky, J.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

Ctyroký, J.

L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[CrossRef]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

Ducloy, M.

V. V. Klimov, M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

Dutta Gupta, S.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Ebendorff-Heidepriem, H.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[CrossRef]

I. M. White, H. Oveys, X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Feld, M. S.

D. J. Heinzen, M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[CrossRef] [PubMed]

Forchel, A.

S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[CrossRef]

Francois, A.

Fujiwara, M.

Furusawa, A.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Fussell, D. P.

D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[CrossRef]

Gayral, B.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Georgiades, N.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Gibson, B. C.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Greentree, A. D.

M. R. Henderson, S. Afshar. V., A. D. Greentree, T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[CrossRef] [PubMed]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Guirleo, G.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef] [PubMed]

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef] [PubMed]

F. Le Kien, K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Hammer, M.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

Heinzen, D. J.

D. J. Heinzen, M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[CrossRef] [PubMed]

Heitmann, H.

F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[CrossRef] [PubMed]

Henderson, M. R.

M. R. Henderson, S. Afshar. V., A. D. Greentree, T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[CrossRef] [PubMed]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Hiremath, K. R.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

Ho, S.-T.

Hoffmann, P.

Hu, E.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Hubálek, M.

L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Igeta, K.

G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Ilchenko, V.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Imamoglu, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Janowicz, M.

W. Żakowicz, M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[CrossRef]

M. Janowicz, W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Junge, C.

Kawai, Y.

Kien, F. L.

Kimble, H.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Kippenberg, T.

S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Kiraz, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Klimov, V. V.

V. V. Klimov, M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

Krishna, S.

Kuan, K.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Kunz, R. E.

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef] [PubMed]

F. Le Kien, K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Lematre, A.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Love, J.

A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).

Lukosz, W.

Machida, S.

G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Manchee, C. P. K.

Martijn de Sterke, C.

D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[CrossRef]

McPhedran, R. C.

D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[CrossRef]

Meldrum, A.

Michler, P.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Miyazaki, H. T.

Monro, T. M.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef] [PubMed]

Nakajima, K.

Nayak, K. P.

Nickel, S.

Noda, T.

O’Shea, D.

Orwa, J. O.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Oveys, H.

I. M. White, H. Oveys, X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Owen, J. F.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

Painter, O.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[CrossRef] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Peter, E.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Petroff, P. M.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Prawer, S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Prkna, L.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
[CrossRef]

Rauschenbeutel, A.

Reitzenstein, S.

S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Rowland, K. J.

Sagnes, I.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Sandoghdar, V.

H. Schniepp, V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Schniepp, H.

H. Schniepp, V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

Schoenfeld, W. V.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Schröder, T.

Senellart, P.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Silverstone, J. W.

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Snyder, A.

A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Spillane, S.

S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

Stintz, A.

Stoffer, R.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

Sugimoto, Y.

Takeuchi, S.

Tomljenovic-Hanic, S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

Ujihara, K.

K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
[CrossRef]

Vahala, K.

S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Varoutsis, S.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

Veinot, J. G. C.

Vernooy, D.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Vollmer, F.

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[CrossRef]

I. M. White, H. Oveys, X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef] [PubMed]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[CrossRef] [PubMed]

G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Zakowicz, W.

W. Żakowicz, M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[CrossRef]

M. Janowicz, W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[CrossRef] [PubMed]

Zamora, V.

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, J.

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Zhang, L.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Zhao, H. Q.

Adv. Mater. (1)

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[CrossRef] [PubMed]

App. Phys. Lett. (1)

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[CrossRef]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
[CrossRef]

Nat. Methods (1)

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[CrossRef]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Opt. Quantum Electron. (2)

L. Prkna, J. Čtyroký, M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
[CrossRef]

Phys. Rev. A (9)

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

F. Björk, H. Heitmann, Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[CrossRef] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. Le Kien, K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

M. Janowicz, W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[CrossRef] [PubMed]

W. Żakowicz, M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[CrossRef]

V. V. Klimov, M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[CrossRef]

G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

D. J. Heinzen, M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[CrossRef] [PubMed]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

R. Yalla, F. Le Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef] [PubMed]

H. Schniepp, V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Other (2)

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics