Abstract

An ideal optical cavity operates by confining light in all three dimensions. We show that a cylindrical waveguide can provide the longitudinal confinement required to form a two dimensional cavity, described here as a self-formed cavity, by locating a dipole, directed along the waveguide, on the interface of the waveguide. The cavity resonance modes lead to peaks in the radiation of the dipole-waveguide system that have no contribution due to the skew rays that exist in longitudinally invariant waveguides and reduce their Q-factor. Using a theoretical model, we evaluate the Q-factor and modal volume of the cavity formed by a dipole-cylindrical-waveguide system and show that such a cavity allows access to both the strong and weak coupling regimes of cavity quantum electrodynamics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
    [Crossref]
  2. P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  4. D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
    [Crossref]
  5. H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
    [Crossref] [PubMed]
  6. S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref] [PubMed]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  9. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
    [Crossref]
  10. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
    [Crossref]
  11. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977).
    [Crossref]
  12. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [Crossref]
  13. M. Janowicz and W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
    [Crossref] [PubMed]
  14. W. Żakowicz and M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
    [Crossref]
  15. J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
    [Crossref]
  16. D. Y. Chu and S.-T. Ho, “Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers,” J. Opt. Soc. Am. B 10, 381–390 (1993).
    [Crossref]
  17. V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
    [Crossref]
  18. D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
    [Crossref]
  19. D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
    [Crossref] [PubMed]
  20. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
    [Crossref] [PubMed]
  21. K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
    [Crossref]
  22. F. Björk, H. Heitmann, and Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
    [Crossref] [PubMed]
  23. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  24. F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
    [Crossref]
  25. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [Crossref] [PubMed]
  26. M. R. Henderson, S. Afshar. V., A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
    [Crossref] [PubMed]
  27. M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
    [Crossref] [PubMed]
  28. T. Schröder, M. Fujiwara, T. Noda, H. Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [Crossref] [PubMed]
  29. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref] [PubMed]
  30. E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
    [Crossref]
  31. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
    [Crossref] [PubMed]
  32. V. Bordo, “Purcell factor for a cylindrical nanocavity: ab initio analytical approach,” J. Opt. Soc. Am. B 29, 1799–1809 (2012).
    [Crossref]
  33. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  34. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
    [Crossref]
  35. C. Junge, S. Nickel, D. O’Shea, and A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett. 36, 3488–3490 (2011).
    [Crossref] [PubMed]
  36. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  37. L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
    [Crossref]
  38. K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
    [Crossref]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  40. K. J. Rowland, S. Afshar. V, and T. M. Monro, “Bandgaps and antiresonance integrated-arrows and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
    [Crossref] [PubMed]
  41. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  42. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
    [Crossref]
  43. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
    [Crossref]
  44. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
    [Crossref]
  45. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19, 21540–21551 (2011).
    [Crossref] [PubMed]
  46. K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21, 11492–11505 (2013).
    [Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (6)

2010 (2)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

2009 (1)

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

2008 (3)

2006 (3)

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

2005 (3)

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[Crossref]

2004 (3)

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[Crossref]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[Crossref]

2003 (3)

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

2002 (2)

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

2001 (1)

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

2000 (1)

W. Żakowicz and M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[Crossref]

1998 (1)

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

1994 (1)

M. Janowicz and W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[Crossref] [PubMed]

1993 (2)

D. Y. Chu and S.-T. Ho, “Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers,” J. Opt. Soc. Am. B 10, 381–390 (1993).
[Crossref]

F. Björk, H. Heitmann, and Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[Crossref] [PubMed]

1991 (2)

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[Crossref] [PubMed]

K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
[Crossref]

1987 (1)

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[Crossref] [PubMed]

1981 (1)

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

1979 (1)

1977 (2)

1946 (1)

E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
[Crossref]

Afshar V., S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Afshar. V, S.

Afshar. V., S.

Aharonovich, I.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Balykin, V. I.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Barber, P. W.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

Becher, C.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Benson, O.

Berman, P.

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Björk, F.

F. Björk, H. Heitmann, and Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[Crossref] [PubMed]

Björk, G.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[Crossref] [PubMed]

Bloch, J.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Bordo, V.

Borselli, M.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Chang, R. K.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

Chu, D. Y.

Ctyroky, J.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

Ctyroký, J.

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

Ducloy, M.

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[Crossref]

Dutta Gupta, S.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Ebendorff-Heidepriem, H.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
[Crossref]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

Feld, M. S.

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[Crossref] [PubMed]

Forchel, A.

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[Crossref]

Francois, A.

Fujiwara, M.

Furusawa, A.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

Fussell, D. P.

D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[Crossref]

Gayral, B.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Georgiades, N.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

Gibson, B. C.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Greentree, A. D.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

M. R. Henderson, S. Afshar. V., A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[Crossref] [PubMed]

Guirleo, G.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hammer, M.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

Heinzen, D. J.

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[Crossref] [PubMed]

Heitmann, H.

F. Björk, H. Heitmann, and Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[Crossref] [PubMed]

Henderson, M. R.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

M. R. Henderson, S. Afshar. V., A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[Crossref] [PubMed]

Hiremath, K. R.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

Ho, S.-T.

Hoffmann, P.

Hu, E.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Hubálek, M.

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Igeta, K.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[Crossref] [PubMed]

Ilchenko, V.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

Imamoglu, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Janowicz, M.

W. Żakowicz and M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[Crossref]

M. Janowicz and W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Junge, C.

Kawai, Y.

Kien, F. L.

Kimble, H.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T.

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Kiraz, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Klimov, V. V.

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[Crossref]

Krishna, S.

Kuan, K.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Kunz, R. E.

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Lematre, A.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Love, J.

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Lukosz, W.

Machida, S.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[Crossref] [PubMed]

Manchee, C. P. K.

Martijn de Sterke, C.

D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[Crossref]

McPhedran, R. C.

D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[Crossref]

Meldrum, A.

Michler, P.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Miyazaki, H. T.

Monro, T. M.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Nakajima, K.

Nayak, K. P.

Nickel, S.

Noda, T.

O’Shea, D.

Orwa, J. O.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Oveys, H.

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
[Crossref]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

Owen, J. F.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

Painter, O.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Peter, E.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Petroff, P. M.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Prawer, S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Prkna, L.

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[Crossref]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
[Crossref]

Rauschenbeutel, A.

Reitzenstein, S.

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Rowland, K. J.

Sagnes, I.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Sandoghdar, V.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Schniepp, H.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

Schoenfeld, W. V.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Schröder, T.

Senellart, P.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Silverstone, J. W.

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

Snyder, A.

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Spillane, S.

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Srinivasan, K.

Stintz, A.

Stoffer, R.

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

Sugimoto, Y.

Takeuchi, S.

Tomljenovic-Hanic, S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

Ujihara, K.

K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
[Crossref]

Vahala, K.

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Varoutsis, S.

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

Veinot, J. G. C.

Vernooy, D.

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2008).
[Crossref]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

F. Björk, H. Heitmann, and Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[Crossref] [PubMed]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[Crossref] [PubMed]

Zakowicz, W.

W. Żakowicz and M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[Crossref]

M. Janowicz and W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[Crossref] [PubMed]

Zamora, V.

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zhang, J.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

Zhang, L.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Zhao, H. Q.

Adv. Mater. (1)

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011).
[Crossref] [PubMed]

App. Phys. Lett. (1)

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” App. Phys. Lett. 89, 191106 (2006).
[Crossref]

Appl. Phys. Lett. (2)

E. Peter, I. Sagnes, G. Guirleo, S. Varoutsis, J. Bloch, A. Lematre, and P. Senellart, “High-Q whispering-gallery modes in GaAs/AlOx microdisks,” Appl. Phys. Lett. 86, 021103 (2005).
[Crossref]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934 (2001).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Ujihara, “Spontaneous emission and concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30, 901–903 (1991).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nat. Photon. (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Opt. Express (7)

T. Schröder, M. Fujiwara, T. Noda, H. Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

M. R. Henderson, S. Afshar. V., A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[Crossref] [PubMed]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[Crossref] [PubMed]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19, 21540–21551 (2011).
[Crossref] [PubMed]

K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21, 11492–11505 (2013).
[Crossref] [PubMed]

K. J. Rowland, S. Afshar. V, and T. M. Monro, “Bandgaps and antiresonance integrated-arrows and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (2)

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).
[Crossref]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2004).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Proceedings of the American Physical Society,” Phys. Rev. 69, 674 (1946).
[Crossref]

Phys. Rev. A (9)

D. Vernooy, A. Furusawa, N. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[Crossref]

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[Crossref]

D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Decay rate and level shift in a circular dielectric waveguide,” Phys. Rev. A 71, 013815 (2005).
[Crossref]

M. Janowicz and W. Żakowicz, “Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface,” Phys. Rev. A 50, 4350–4364 (1994).
[Crossref] [PubMed]

W. Żakowicz and M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000).
[Crossref]

F. Björk, H. Heitmann, and Y. Yamamoto, “Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers,” Phys. Rev. A 47, 4451–4463 (1993).
[Crossref] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a Cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987).
[Crossref] [PubMed]

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Other (2)

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Radiation (blue) and guided (green) power of a z–oriented dipole, located at the interface of a step-index tellurite-air fiber. TE-WGMs resonances (m, p) are shown. Insets show transverse distribution of |Ez(x, y)|2, respectively from left, for a peak and off-peak using Eq. (1) and a peak using using the FDTD package Meep [39]. The core-clad interface is shown by white circles and the position of the dipoles is shown by black dots. The position of the dipole in the far right inset is at the top.

Fig. 2
Fig. 2

Radiation power of a z–oriented dipole located at the interface of a tellurite-air step-index fiber and due to the integral of all 0 < β < kncl, (blue curves). Other peaks correspond to different ranges of β k n cl bins, i.e., 0 < β k n cl < 1 as labeled, and the summation of these peaks is shown (red circles). (a) and (b) correspond to TE-WGM resonances (12, 0) and (29, 0), as labeled by black circles.

Fig. 3
Fig. 3

(a) Purcell factor, (b) Q-factor, (c) effective modal volume, and (d) coupling coefficient and decay rate as functions of fiber core diameter at λ = 700nm. Calculations in (d) are for a quantum dot with a spontaneous emission lifetime of 1ns inside a tellurite glass with n = 2.025. The dashed line represents a decay rate of 1 GHz for the quantum dot used for this calculation [31]

Fig. 4
Fig. 4

Sensitivity; shift per refractive index unit (RIU) per linewidth (LW) as a function of core diameter.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = j a j e j ( x , y ) e i β j z + ν 0 Q max a ν ( Q ) e ν ( x , y , Q ) e i β ν ( Q ) z d Q + B K ,
| a j | 2 = ω 2 16 N j 2 | e j * ( r 0 ) p 0 ( r 0 ) | 2 ,
P total = j P j + ν 0 Q max P ν ( Q ) d Q .
J m ( n co x ) H m ( n cl x ) q s H m ( n cl x ) J m ( n co x ) = 0 ,
D res = 2 l / ( 2 π n co / λ res ) 2 k r 2 β 2

Metrics