Abstract

We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
    [CrossRef]
  2. N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
    [CrossRef]
  3. A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
    [CrossRef]
  4. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
    [CrossRef]
  5. E. Martin, R. Watts, L. Bramerie, A. Shen, H. Gariah, F. Blache, F. Lelarge, L. Barry, “Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation,” Opt. Lett. 37, 4967–4969 (2012).
    [CrossRef] [PubMed]
  6. R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
    [CrossRef] [PubMed]
  7. E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
    [CrossRef]
  8. E. Rafailov, M. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
    [CrossRef]
  9. J. Akbar, L. Hou, M. Haji, M. J. Strain, J. H. Marsh, A. C. Bryce, A. E. Kelly, “High power (130mw) 40ghz 1.55μm mode-locked distributed bragg reflector lasers with integrated optical amplifiers,” Opt. Lett. 37, 344–346 (2012).
    [CrossRef] [PubMed]
  10. K. Sato, A. Hirano, H. Ishii, “Chirp-compensated 40-ghz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
    [CrossRef]
  11. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
    [CrossRef]
  12. U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
    [CrossRef]
  13. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  14. F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
    [CrossRef]
  15. F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, G. Huyet, “Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser,” Opt. Express 17, 6258–6267 (2009).
    [CrossRef] [PubMed]
  16. M. Radziunas, H.-J. Wünsche, “Multisection lasers: Longitudinal modes and their dynamics,” in Optoelectronic Devices, J. Piprek, ed. (Springer, 2005), pp. 121–150.
    [CrossRef]
  17. M. Radziunas, “Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers,” Physica D Nonlinear Phenomena 213, 98–112 (2006).
    [CrossRef]
  18. M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
    [CrossRef]
  19. M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
    [CrossRef]
  20. F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.
  21. M. Strain, P. Stolarz, M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
    [CrossRef]

2013 (1)

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

2012 (3)

2011 (5)

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

M. Strain, P. Stolarz, M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[CrossRef]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

2009 (2)

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, G. Huyet, “Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser,” Opt. Express 17, 6258–6267 (2009).
[CrossRef] [PubMed]

2008 (2)

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

2007 (2)

E. Rafailov, M. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

2006 (1)

M. Radziunas, “Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers,” Physica D Nonlinear Phenomena 213, 98–112 (2006).
[CrossRef]

2001 (1)

U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[CrossRef]

1999 (1)

K. Sato, A. Hirano, H. Ishii, “Chirp-compensated 40-ghz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Accard, A.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
[CrossRef] [PubMed]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Akbar, J.

Akrout, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

Barry, L.

Barry, L. P.

Bendelow, U.

U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[CrossRef]

Bimberg, D.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

Blache, F.

Bramerie, L.

Brendel, F.

F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.

Brenot, R.

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Bryce, A. C.

Cabon, B.

F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.

Calligaro, M.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Carbonnelle, M.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Cataluna, M.

E. Rafailov, M. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

Chimot, N.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

Dagens, B.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Debregeas-Sillard, H.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

Dernazaretian, C.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Duan, G.-H.

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fiol, G.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

Franchin, F.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

Gariah, H.

Haji, M.

Hasler, K.

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

Hegarty, S.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

Hirano, A.

K. Sato, A. Hirano, H. Ishii, “Chirp-compensated 40-ghz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[CrossRef]

Hou, L.

Huyet, G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, G. Huyet, “Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser,” Opt. Express 17, 6258–6267 (2009).
[CrossRef] [PubMed]

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

Ishii, H.

K. Sato, A. Hirano, H. Ishii, “Chirp-compensated 40-ghz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[CrossRef]

Joshi, S.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

Kefelian, F.

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

Kéfélian, F.

Kelly, A. E.

Krakowski, M.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Le Gouezigou, L.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Le Gouezigou, O.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Legouezigou, O.

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

Lelarge, F.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
[CrossRef] [PubMed]

E. Martin, R. Watts, L. Bramerie, A. Shen, H. Gariah, F. Blache, F. Lelarge, L. Barry, “Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation,” Opt. Lett. 37, 4967–4969 (2012).
[CrossRef] [PubMed]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Make, D.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Marsh, J. H.

Martin, E.

Martinez, A.

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
[CrossRef] [PubMed]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

McInerney, J.

McInerney, J. G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

Merghem, K.

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
[CrossRef] [PubMed]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Murdoch, S. G.

O’Donoghue, S.

F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, G. Huyet, “Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser,” Opt. Express 17, 6258–6267 (2009).
[CrossRef] [PubMed]

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

Poette, J.

F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.

Poingt, F.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Pommereau, F.

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Provost, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Provost, J. G.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Provost, J.-G.

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

Radziunas, M.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

M. Radziunas, “Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers,” Physica D Nonlinear Phenomena 213, 98–112 (2006).
[CrossRef]

U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[CrossRef]

M. Radziunas, H.-J. Wünsche, “Multisection lasers: Longitudinal modes and their dynamics,” in Optoelectronic Devices, J. Piprek, ed. (Springer, 2005), pp. 121–150.
[CrossRef]

Rafailov, E.

E. Rafailov, M. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

Ramdane, A.

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
[CrossRef] [PubMed]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Resneau, P.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

Rosales, R.

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20, 8649–8657 (2012).
[CrossRef] [PubMed]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Rousseau, B.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Sato, K.

K. Sato, A. Hirano, H. Ishii, “Chirp-compensated 40-ghz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[CrossRef]

Schmeckebier, H.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

Shen, A.

E. Martin, R. Watts, L. Bramerie, A. Shen, H. Gariah, F. Blache, F. Lelarge, L. Barry, “Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation,” Opt. Lett. 37, 4967–4969 (2012).
[CrossRef] [PubMed]

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

Sibbett, W.

E. Rafailov, M. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

Sieber, J.

U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[CrossRef]

Sooudi, E.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

Sorel, M.

M. Strain, P. Stolarz, M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[CrossRef]

Stolarz, P.

M. Strain, P. Stolarz, M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[CrossRef]

Strain, M.

M. Strain, P. Stolarz, M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[CrossRef]

Strain, M. J.

Sumpf, B.

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

Tien, T. Q.

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

Todaro, M.

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

Todaro, M. T.

Tourrenc, J. P.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Van Dijk, F.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Van-Dijk, F.

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

Viktorov, E. A.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

Vladimirov, A. G.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

Watts, R.

Wenzel, H.

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

Wolfrum, M.

U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[CrossRef]

Wünsche, H.-J.

M. Radziunas, H.-J. Wünsche, “Multisection lasers: Longitudinal modes and their dynamics,” in Optoelectronic Devices, J. Piprek, ed. (Springer, 2005), pp. 121–150.
[CrossRef]

Yi, J.

F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.

Zwick, T.

F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.

IEEE J. Quantum Electron. (3)

U. Bendelow, M. Radziunas, J. Sieber, M. Wolfrum, “Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[CrossRef]

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: Simulation, analysis, and experiments,” IEEE J. Quantum Electron. 47, 935–943 (2011).
[CrossRef]

M. Strain, P. Stolarz, M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[CrossRef]

IEEE Photonics Technol. Lett. (5)

F. Kefelian, S. O’Donoghue, M. Todaro, J. G. McInerney, G. Huyet, “Rf linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20, 1405–1407 (2008).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. Van Dijk, P. Resneau, M. Krakowski, G.-H. Duan, “High bandwidth operation of directly modulated laser based on quantum-dash InAs/InP material at 1.55μm,” IEEE Photonics Technol. Lett. 20, 903–905 (2008).
[CrossRef]

N. Chimot, S. Joshi, F. Lelarge, A. Accard, J.-G. Provost, F. Franchin, H. Debregeas-Sillard, “Qdash-based directly modulated lasers for next-generation access network,” IEEE Photonics Technol. Lett. 25, 1660–1663 (2013).
[CrossRef]

A. Akrout, A. Shen, R. Brenot, F. Van-Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, “Separate error-free transmission of eight channels at 10 gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photonics Technol. Lett. 21, 1746–1748 (2009).
[CrossRef]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, A. Martinez, A. Ramdane, S. Hegarty, “Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection,” IEEE Photonics Technol. Lett. 23, 549–551 (2011).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

J. Phys. B At. Mol. Opt. Phys. (1)

M. Radziunas, K. Hasler, B. Sumpf, T. Q. Tien, H. Wenzel, “Mode transitions in distributed bragg reflector semiconductor lasers: experiments, simulations and analysis,” J. Phys. B At. Mol. Opt. Phys. 44, 105401 (2011).
[CrossRef]

J. Sel. Top. Quantum Electron. (3)

K. Sato, A. Hirano, H. Ishii, “Chirp-compensated 40-ghz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55/mum applications,” J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Nat. Photonics (1)

E. Rafailov, M. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Physica D Nonlinear Phenomena (1)

M. Radziunas, “Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers,” Physica D Nonlinear Phenomena 213, 98–112 (2006).
[CrossRef]

Other (2)

F. Brendel, J. Yi, J. Poette, B. Cabon, T. Zwick, “Properties of millimeter-wave signal generation and modulation using mode-locked q-dash lasers for gigabit rf-over-fiber links,” in The 7th German Microwave Conference (GeMiC)(2012), pp. 1–4.

M. Radziunas, H.-J. Wünsche, “Multisection lasers: Longitudinal modes and their dynamics,” in Optoelectronic Devices, J. Piprek, ed. (Springer, 2005), pp. 121–150.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Light Current characteristics of a 1000 μm long as cleaved FP QDash Laser with a ridge withd of 1.5 μm at temperatures between 25°C, and 85°C, showing optical powers of up to 40 mW at 25°C

Fig. 2
Fig. 2

(a) Optical spectrum of the FP laser of 1000 μm length and 1.5 μm ridge width at 20°C, and 90°C and (b) corresponding RF line-widths

Fig. 3
Fig. 3

Schematic representation of the ML laser with the Bragg grating induced frequency dependent field reflection RBG(ω).

Fig. 4
Fig. 4

Designed Bragg gratings with κ = 40cm−1, LBG = 250 μm; κ = 200cm−1, LBG = 50 μm; κ = 400cm−1, LBG = 25 μm showing corresponding passbands of about 2.8nm, 5.3nm and 28.6 nm respectively at the same maximum reflectivity of about 60%

Fig. 5
Fig. 5

Optical Spectres and RF Line-widths of Bragg Lasers with (a,d) κ = 40cm−1, LBG = 250 μm; (b,e) κ = 200cm−1, LBG = 50 μm; (c,f) κ = 400cm−1, LBG = 25 μm

Fig. 6
Fig. 6

(a) RF-spectrum mapping for grating with κ = 400 cm−1, LBG = 25 μm, which shows regions with very narrow line-width (marked with arrows) with some fluctuations. (b) Corresponding RF line-width of 30 kHz obtained at a bias current of 310 mA. (c) RF-spectrum mapping for FP laser with similar fluctuations in RF line-width.

Fig. 7
Fig. 7

Calculated mode damping ℑmk) (top) and frequency separation ℜek − Ωk−1) of the adjacent modes (bottom) vs mode frequency ℑmk) for the FP laser with R1 = 0.6 and the lasers with different BG satisfying κBGLBG = 1 and R1 = 0.

Fig. 8
Fig. 8

Optical micrograph of the device (top). Light Current characteristics of the device shown above with 1000 μm gain section followed by a 1000 μm SOA having a ridge width of 1.5μm at 25°C. Figure also shows the LI characteristics of such a laser when SOA is pumped with different currents.

Fig. 9
Fig. 9

(a) RF-spectrum mapping for grating with κ =400cm−1, LBG = 25 μm, which shows regions with very narrow line-width with some fluctuations at discrete SOA current regions. In this mapping the current electrical injection on the gain section is kept constant to around 300 mA and the electrical current on the SOA section is varied between 0 and 300 mA. (b) Corresponding RF line-width of 33 kHz obtained at 300 mA current to gain and 150 mA on SOA.

Fig. 10
Fig. 10

(a) Bit error ratio, using the SOA section as a modulator (b) Eye pattern at 2.5 Gbps with an 8dB extinction ratio and at 5Gbps with 3dB extinction ratio

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n g c 0 t E ± = [ z i β ( z , t ) 𝒟 ] E ± i κ E + F s p ± .
z E ^ + ( z , ω ) = i ω n g c 0 E ^ + ( z , ω ) i κ E ^ ( z , ω )
z E ^ ( z , ω ) = i κ E ^ + ( z , ω ) + i ω n g c 0 E ^ ( z , ω ) ,
E ^ ( z , ω ) = ( cosh η z i ω n g c 0 η sinh η z i κ η sinh η z i κ η sinh η z cosh η z + i ω n g c 0 η sinh η z ) E ^ ( 0 , ω ) ,
r B G ( ω ) = i sinh η L B G η κ cosh η L B G + i ω n g κ c 0 sinh η L B G ,
R B G ( ω ) = sinh 2 η L B G cosh 2 η L B G ( ω n g κ c 0 ) 2 .
E + ( L G , t ) = r 0 E ( L G , t ) , E ( L B G , t ) = r 1 E + ( L B G , t ) ,
i t E = H ( β ) E , H ( β ) = def c 0 n g ( i z β κ κ i z β ) ,
Ω ( β ) Θ ( β , z ) = H ( β ) Θ ( β , z ) , Θ ( β , 0 ) ~ ( r 0 1 ) , Θ ( β , L ) ~ ( 1 r L ) .
d d t f k = i Ω k f k + l K k l f l ,
γ k = m ( Ω k ) = γ , γ = def c 0 n g ( m ( β ) + ln ( R 0 R 1 ) L ) ,
Δ k = e ( Ω k Ω k 1 ) = Δ , Δ = def π c 0 n g L ,
f k ( t ) ~ e i Ω k t = e ( γ + i φ k + i k Δ ) t .

Metrics