Abstract

A novel active fiber loop ring-down gas sensor combined with dual wavelengths differential absorption method is proposed. Two Distributed Feedback Laser Diodes (DFB LDs) with different wavelengths are employed. One LD whose wavelength covered with the absorption line of target gas is used for sensing. Another LD whose wavelength is centered outside the absorption line is used for reference. The gas absorption loss can be obtained by differencing the reference signal and sensing signal. Compared with traditional method of one wavelength employed, it can eliminate the influence of the cavity loss variety and photoelectric device drift in the system efficiently. An Erbium Doped Fiber Amplifier (EDFA) with Automatic Gain Control (AGC) is used to compensate the loss of the light in the ring-down cavity, which will increase the cavity round trips and improve the precision of gas detection. And two fiber Bragg gratings (FBGs) are employed to get rid of amplified spontaneous emission (ASE) spectrum noise as filters. The calibrating ethyne samples of different concentrations are measured with a 65 mm long gas cell in order to evaluate the effect of reference. The results show the relative deviation is found to be less than ± 0.4% of 0.1% ethyne when a certain additional loss from 0 to 1.2dB is introduced to the cavity and the relative deviation of measured concentration is less than ± 0.5% over 24 hours.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [CrossRef]
  2. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
    [CrossRef] [PubMed]
  3. D. B. Atkinson, “Cavity ring-down spectroscopy: techniques and applications,” J. Am. Chem. Soc. 132(13), 4972 (2010).
    [CrossRef]
  4. J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).
  5. H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
    [CrossRef] [PubMed]
  6. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
    [CrossRef]
  7. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
    [CrossRef]
  8. T. von Lerber, M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41(18), 3567–3575 (2002).
    [CrossRef] [PubMed]
  9. S. Pu, X. J. Gu, “Fiber loop ring-down spectroscopy with a long-period grating cavity,” Opt. Lett. 34(12), 1774–1776 (2009).
    [CrossRef] [PubMed]
  10. J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
    [CrossRef]
  11. H. F. Huang, K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15(14), 8745–8759 (2007).
    [CrossRef] [PubMed]
  12. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39(12), 2009–2016 (2000).
    [CrossRef] [PubMed]
  13. Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
    [CrossRef] [PubMed]
  14. M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
    [CrossRef]
  15. M. Gupta, H. Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27(21), 1878–1880 (2002).
    [CrossRef] [PubMed]
  16. G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
    [CrossRef]
  17. Z. Q. Tan, X. W. Long, “A developed optical-feedback cavity ring-down spectrometer and its application,” Appl. Spectrosc. 66(5), 492–495 (2012).
    [CrossRef] [PubMed]
  18. K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
    [CrossRef]
  19. Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).
  20. H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
    [CrossRef] [PubMed]
  21. G. Stewart, K. Atherton, B. Culshaw, “Cavity-enhanced spectroscopy in fiber cavities,” Opt. Lett. 29(5), 442–444 (2004).
    [CrossRef] [PubMed]
  22. N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
    [CrossRef]
  23. K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010).
    [CrossRef]
  24. T. Brauers, M. Hausmann, U. Brandenburger, H. P. Dorn, “Improvement of differential optical absorption spectroscopy with a multichannel scanning technique,” Appl. Opt. 34(21), 4472–4479 (1995).
    [CrossRef] [PubMed]
  25. A. Merten, J. Tschritter, U. Platt, “Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics,” Appl. Opt. 50(5), 738–754 (2011).
    [CrossRef] [PubMed]
  26. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34(10), 1513–1515 (2009).
    [CrossRef] [PubMed]
  27. J. R. Chen, K. Numata, S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
    [CrossRef] [PubMed]
  28. R. E. Warren, R. G. Vanderbeek, “Online estimation of vapor path-integrated concentration and absorptivity using multiwavelength differential absorption lidar,” Appl. Opt. 46(31), 7579–7586 (2007).
    [CrossRef] [PubMed]
  29. B. Kaldvee, C. Brackmann, M. Aldén, J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012).
    [CrossRef] [PubMed]
  30. G. Stewart, K. T. V. Grattan, and B. T. Meggitt, in Optical Fiber Sensor Technology, Kluwer (Academic, 1998).
  31. Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
    [CrossRef]

2013 (1)

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (1)

2010 (4)

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010).
[CrossRef]

D. B. Atkinson, “Cavity ring-down spectroscopy: techniques and applications,” J. Am. Chem. Soc. 132(13), 4972 (2010).
[CrossRef]

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

2009 (4)

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34(10), 1513–1515 (2009).
[CrossRef] [PubMed]

S. Pu, X. J. Gu, “Fiber loop ring-down spectroscopy with a long-period grating cavity,” Opt. Lett. 34(12), 1774–1776 (2009).
[CrossRef] [PubMed]

2008 (2)

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

2007 (2)

2004 (1)

2003 (2)

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).

2002 (3)

2001 (1)

G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[CrossRef]

2000 (2)

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39(12), 2009–2016 (2000).
[CrossRef] [PubMed]

1995 (2)

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Aldén, M.

Atherton, K.

G. Stewart, K. Atherton, B. Culshaw, “Cavity-enhanced spectroscopy in fiber cavities,” Opt. Lett. 29(5), 442–444 (2004).
[CrossRef] [PubMed]

G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[CrossRef]

Atkinson, D. B.

D. B. Atkinson, “Cavity ring-down spectroscopy: techniques and applications,” J. Am. Chem. Soc. 132(13), 4972 (2010).
[CrossRef]

Baer, D. S.

Barnes, J. A.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

Bennion, I.

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

Bescherer, K.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Bood, J.

Brackmann, C.

Brandenburger, U.

Brauers, T.

Chan, C. C.

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

Chang, J.

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Chen, J. R.

Chen, Y.

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

Cheung, A. H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

Chuah, T. K.

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

Couloume, G. L.

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

Culshaw, B.

G. Stewart, K. Atherton, B. Culshaw, “Cavity-enhanced spectroscopy in fiber cavities,” Opt. Lett. 29(5), 442–444 (2004).
[CrossRef] [PubMed]

G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Dorn, H. P.

Dudek, J. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Dürr, C. J.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Farries, M.

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

Gu, X. J.

Gupta, M.

Hahn, J. W.

J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
[CrossRef]

Hanson, R. K.

Hausmann, M.

Hayes, N.

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

Hirano, Y.

Hofbauer, H.

Huang, H. F.

Imaki, M.

Jiang, M.

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

Jiao, H.

Jin, W.

Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).

Kaldvee, B.

Kameyama, S.

Kawakami, S.

Kessler, J.

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

Kim, J. W.

J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
[CrossRef]

Lee, H. W.

J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
[CrossRef]

Lee, J. Y.

J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
[CrossRef]

Lehmann, K. K.

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

H. F. Huang, K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15(14), 8745–8759 (2007).
[CrossRef] [PubMed]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Li, Y.

Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
[CrossRef]

Li, Y. F.

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Litman, J.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

Liu, B.

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

Liu, T.

Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
[CrossRef]

Liu, T. Y.

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Liu, Y. P.

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

Lollar, B. S.

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

Long, X. W.

Loock, H.-P.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

Merten, A.

Mou, C. B.

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

Nakajima, M.

Ni, J. S.

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Ni, N.

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

Numata, K.

O’Keefe, A.

M. Gupta, H. Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27(21), 1878–1880 (2002).
[CrossRef] [PubMed]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Oleschuk, R. D.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Onstott, T. C.

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

Platt, U.

Pu, S.

Rabinowitz, P.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Sakaizawa, D.

Shum, P.

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

Sigrist, M. W.

Stewart, G.

G. Stewart, K. Atherton, B. Culshaw, “Cavity-enhanced spectroscopy in fiber cavities,” Opt. Lett. 29(5), 442–444 (2004).
[CrossRef] [PubMed]

G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[CrossRef]

Tan, Z. Q.

Tarsa, P. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Totschnig, G.

Tschritter, J.

Ueno, S.

Vanderbeek, R. G.

Velasquez, A.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

von Lerber, T.

Waechter, H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Wang, C.

Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
[CrossRef]

Wang, J.

Wang, Q.

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Wang, Z.

K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010).
[CrossRef]

Warren, R. E.

Webb, D. J.

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

Winter, F.

Wladyslawski, M.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Wu, C. Q.

K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010).
[CrossRef]

Wu, S. T.

Xia, L.

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

Yoo, Y. S.

J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
[CrossRef]

Yu, H. B.

G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[CrossRef]

Yu, K. L.

K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010).
[CrossRef]

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

Zhang, M.

Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).

Zhang, Q.

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

Zhang, T.

Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
[CrossRef]

Zhang, W. G.

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).

Zhao, Y.

Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
[CrossRef]

Zhao, Y. J.

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Zhou, K. M.

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

Anal. Chem. (3)

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Y. Chen, K. K. Lehmann, J. Kessler, B. S. Lollar, G. L. Couloume, T. C. Onstott, “Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy,” Anal. Chem. 85(23), 11250–11257 (2013).
[CrossRef] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, H.-P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Spectrosc. (1)

IEEE Photon. Technol. Lett. (1)

K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, I. Bennion, “Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser,” IEEE Photon. Technol. Lett. 21(22), 1653–1655 (2009).
[CrossRef]

IEEE Sens. J. (1)

K. L. Yu, C. Q. Wu, Z. Wang, “Optical methane sensor based on a fiber loop at 1665 nm,” IEEE Sens. J. 10(3), 728–731 (2010).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

J. Am. Chem. Soc. (1)

D. B. Atkinson, “Cavity ring-down spectroscopy: techniques and applications,” J. Am. Chem. Soc. 132(13), 4972 (2010).
[CrossRef]

J. Appl. Phys. (1)

J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, H. W. Lee, “Spatial-domain cavity ringdown from a high-finesse plane Fabry–Perot cavity,” J. Appl. Phys. 91(2), 582–594 (2002).
[CrossRef]

J. Chem. Phys. (1)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

J. Electron. Sci. Technol. China (1)

J. S. Ni, J. Chang, T. Y. Liu, Y. F. Li, Y. J. Zhao, Q. Wang, “Fiber methane gas sensor and its application in methane outburst prediction in coal mine,” J. Electron. Sci. Technol. China 6(4), 373–376 (2008).

Meas. Sci. Technol. (2)

G. Stewart, K. Atherton, H. B. Yu, B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[CrossRef]

N. Ni, C. C. Chan, T. K. Chuah, L. Xia, P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19(11), 115203 (2008).
[CrossRef]

Opt. Commun. (1)

M. Jiang, W. G. Zhang, Q. Zhang, Y. P. Liu, B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283(2), 249–253 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

Y. Zhao, Y. Li, T. Zhang, C. Wang, T. Liu, “Effect of temperature on methane gas concentration by tunable diode laser absorption spectroscopy,” Proc. SPIE 8421, 8421AP (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Sensor. Actuat. A-Phys (1)

Y. Zhang, M. Zhang, W. Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensor. Actuat. A-Phys 104(2), 183–187 (2003).

Sensors (Basel) (1)

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.-P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[CrossRef] [PubMed]

Other (1)

G. Stewart, K. T. V. Grattan, and B. T. Meggitt, in Optical Fiber Sensor Technology, Kluwer (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of the proposed dual wavelengths active fiber ring-down gas detecting system (DFB LD: Distributed Feedback Laser Diode; FBG: fiber Bragg grating; PD: photo diode; EDFA: Erbium Doped Fiber Amplifier)

Fig. 2
Fig. 2

Output ring-down signals and the fitted curves of pure nitrogen

Fig. 3
Fig. 3

Output ring-down signals and the fitted curves of 10% ethyne

Fig. 4
Fig. 4

(a). the 1/e ring-down time versus ethyne concentration; (b). the round-trip loss versus ethyne concentration; (c). the ethyne concentration versus absorption loss.)

Fig. 5
Fig. 5

(a). the round-trip loss versus additional loss; (b). the absorption loss versus additional loss; (c). the ethyne concentration versus additional loss.)

Fig. 6
Fig. 6

Ethyne concentration variation for 24 hours

Tables (1)

Tables Icon

Table 1 Parameters of fitting exponential decay curves

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 exp( δ 10loge ).
I m = I 0 exp(mδ/4.343).
t r τ = 4.343 δ .
δ= δ t + δ in + δ c + δ gas + δ oth -G =δ'+ δ gas .
δ gas =δδ'
δ gas =δ δ 0
δ gas =δ( λ 1 )δ( λ 2 )
I'=I ' 0 e αLC
δ gas =4.343αLC
C= δ gas 4.343αL
y= y 0 + A 1 exp[ - t t r ]
C=4.9994 δ gas 0.00021

Metrics