Abstract

We present the first complete temporal and spatial characterization of the amplified spontaneous emission (ASE) of laser radiation generated by a diode-pumped high-power laser system. The ASE of the different amplifiers was measured independently from the main pulse and was characterized within a time window of −10ms ≤ t ≤ 10ms and an accuracy of up to 15fs around the main pulse. Furthermore, the focusability and the energy of the ASE from each amplifier was measured after recompression. Using our analysis method, the laser components, which need to be optimized for a further improvement of the laser contrast, can be identified. This will be essential for laser-matter interaction experiments requiring a minimized ASE intensity or fluence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21, 29231–29239 (2013).
    [CrossRef]
  2. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, J. Lee, “Generation of high-contrast, 30fs, 1.5PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20, 10807–10815 (2012).
    [CrossRef] [PubMed]
  3. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).
    [CrossRef] [PubMed]
  4. E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
    [CrossRef]
  5. A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
    [CrossRef]
  6. S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104, 11–16 (2011).
    [CrossRef]
  7. S. Keppler, M. Hornung, R. Bödefeld, M. Kahle, J. Hein, M. C. Kaluza, “All-reflective, highly accurate polarization rotator for high-power short-pulse laser systems,” Opt. Express 20, 20742–20747 (2012).
    [CrossRef] [PubMed]
  8. http://www.amplitude-technologies.com//client/document/sequoia_15.pdf .
  9. M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38, 718–720 (2013).
    [CrossRef] [PubMed]
  10. R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
    [CrossRef]
  11. C. Dorrer, J. Bromage, J. D. Zuegel, “High-dynamic-range single-shot cross-correlator based on an optical pulse replicator,” Opt. Express 16, 13534–13544 (2008).
    [CrossRef] [PubMed]
  12. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
    [CrossRef]
  13. V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
    [CrossRef]
  14. http://http://www.bme-bergmann.de/delaygen.htm .
  15. A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
    [CrossRef]
  16. A. Bogeaerts, Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation,” Spectrochim. Acta, Part B 60, 1280–1307 (2005).
    [CrossRef]
  17. L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
    [CrossRef]
  18. B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
    [CrossRef]
  19. O. Benavides, V. Golikov, O. Lebedeva, “Reflection of high-intensity nanosecond Nd:YAG laser pulses by metals,” Appl. Phys. A 112, 113–117 (2012).
    [CrossRef]
  20. A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
    [CrossRef] [PubMed]
  21. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, V. Yanovsky, “Generation of 1011 contrast 50TW laser pulses,” Opt. Lett. 31, 1456–1458 (2006).
    [CrossRef] [PubMed]
  22. R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34, 2273–2275 (2009).
    [CrossRef] [PubMed]
  23. Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36, 781–783 (2011).
    [CrossRef] [PubMed]
  24. M. P. Kalashnikov, E. Risse, H. Schönnagel, W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30, 923–925 (2005).
    [CrossRef] [PubMed]

2013 (5)

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21, 29231–29239 (2013).
[CrossRef]

A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[CrossRef]

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38, 718–720 (2013).
[CrossRef] [PubMed]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (3)

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104, 11–16 (2011).
[CrossRef]

B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
[CrossRef]

Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36, 781–783 (2011).
[CrossRef] [PubMed]

2009 (3)

R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34, 2273–2275 (2009).
[CrossRef] [PubMed]

E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[CrossRef]

R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
[CrossRef]

2008 (2)

2006 (1)

2005 (2)

M. P. Kalashnikov, E. Risse, H. Schönnagel, W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30, 923–925 (2005).
[CrossRef] [PubMed]

A. Bogeaerts, Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation,” Spectrochim. Acta, Part B 60, 1280–1307 (2005).
[CrossRef]

2004 (1)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

2003 (2)

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
[CrossRef]

Andò, L.

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Arunachalam, A. K.

Benavides, O.

O. Benavides, V. Golikov, O. Lebedeva, “Reflection of high-intensity nanosecond Nd:YAG laser pulses by metals,” Appl. Phys. A 112, 113–117 (2012).
[CrossRef]

Bödefeld, R.

Bogeaerts, A.

A. Bogeaerts, Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation,” Spectrochim. Acta, Part B 60, 1280–1307 (2005).
[CrossRef]

A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
[CrossRef]

Borghesi, M.

A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[CrossRef]

Bromage, J.

Chen, Z.

A. Bogeaerts, Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation,” Spectrochim. Acta, Part B 60, 1280–1307 (2005).
[CrossRef]

A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
[CrossRef]

Cheriaux, G.

Chu, Y.

Chvykov, V.

Divoky, M.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Dogar, A. H.

B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
[CrossRef]

Doria, D.

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Dorrer, C.

Druon, F.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Ehrt, D.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Esarey, E.

E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[CrossRef]

Fernandez, J. C.

Flippo, K. A.

Forget, N.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Gammino, S.

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Georges, P.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Gijbels, R.

A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
[CrossRef]

Golikov, V.

O. Benavides, V. Golikov, O. Lebedeva, “Reflection of high-intensity nanosecond Nd:YAG laser pulses by metals,” Appl. Phys. A 112, 113–117 (2012).
[CrossRef]

Hegelich, B. M.

R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34, 2273–2275 (2009).
[CrossRef] [PubMed]

R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
[CrossRef]

Hein, J.

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, M. C. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38, 718–720 (2013).
[CrossRef] [PubMed]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

S. Keppler, M. Hornung, R. Bödefeld, M. Kahle, J. Hein, M. C. Kaluza, “All-reflective, highly accurate polarization rotator for high-power short-pulse laser systems,” Opt. Express 20, 20742–20747 (2012).
[CrossRef] [PubMed]

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104, 11–16 (2011).
[CrossRef]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Hellwing, M.

Hornung, M.

Houard, A.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Huang, Y.

Ilyas, B.

B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
[CrossRef]

Jäckel, O.

Jambunathan, V.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Jeong, T. M.

Johnson, R. P.

R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
[CrossRef]

R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34, 2273–2275 (2009).
[CrossRef] [PubMed]

Jullien, A.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Kahle, M.

Kalashnikov, M. P.

Kalinchenko, G.

Kaluza, M. C.

Keppler, S.

Kessler, A.

Koerner, J.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Körner, J.

Krushelnick, K.

Lebedeva, O.

O. Benavides, V. Golikov, O. Lebedeva, “Reflection of high-intensity nanosecond Nd:YAG laser pulses by metals,” Appl. Phys. A 112, 113–117 (2012).
[CrossRef]

Lee, J.

Lee, S. K.

Leemans, W. P.

E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[CrossRef]

Leng, Y.

Li, D.

Li, R.

Liang, X.

Liebetrau, H.

Liu, Y.

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21, 29231–29239 (2013).
[CrossRef]

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Lopez-Martens, R.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Lu, X.

Lucianetti, A.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Ma, L.

Macchi, A.

A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[CrossRef]

Maksimchuk, A.

Matsuoka, T.

Mocek, T.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Mourou, G.

Nassisi, V.

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Nees, J.

Papadopoulos, D.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Passoni, M.

A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[CrossRef]

Pedone, A.

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Pellegrina, A.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Planchon, T.

Podleska, S.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Polz, J.

Qayyum, A.

B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
[CrossRef]

Ramirez, P.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Reed, S.

Ricci, A.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Risse, E.

Rousseau, J. P.

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Rousseau, P.

Sandner, W.

Sauerbrey, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Sävert, A.

Sawicka, M.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Schönnagel, H.

Schorcht, F.

Schroeder, C. B.

E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[CrossRef]

Shah, R. C.

R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
[CrossRef]

R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34, 2273–2275 (2009).
[CrossRef] [PubMed]

Shimada, T.

R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34, 2273–2275 (2009).
[CrossRef] [PubMed]

R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
[CrossRef]

Siebold, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Sikocinski, P.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Sung, J. H.

Torrisi, L.

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Ullah, S.

B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
[CrossRef]

Vertes, A.

A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
[CrossRef]

Wintzer, W.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Xu, L.

Xu, Y.

Xu, Z.

Yanovsky, V.

Yoon, J. W.

Yu, L.

Yu, T. J.

Zhang, C.

Zuegel, J. D.

Appl. Phys. A (1)

O. Benavides, V. Golikov, O. Lebedeva, “Reflection of high-intensity nanosecond Nd:YAG laser pulses by metals,” Appl. Phys. A 112, 113–117 (2012).
[CrossRef]

Appl. Phys. B (2)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104, 11–16 (2011).
[CrossRef]

Appl. Surf. Sci. (1)

L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, “Comparison of nanosecond laser ablation at 1064 and 308nm wavelength,” Appl. Surf. Sci. 210, 262–273 (2003).
[CrossRef]

Eur. Phys. J D (1)

R. C. Shah, R. P. Johnson, T. Shimada, B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors,” Eur. Phys. J D 55, 305–309 (2009).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

B. Ilyas, A. H. Dogar, S. Ullah, A. Qayyum, “Laser fluence effects on ion emission from a laser-generated Cu plasma,” J. Phys. D: Appl. Phys. 44, 295202 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Proc. SPIE (1)

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[CrossRef]

Rev. Mod. Phys. (2)

E. Esarey, C. B. Schroeder, W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[CrossRef]

A. Macchi, M. Borghesi, M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Ricci, A. Jullien, J. P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84, 043106 (2013).
[CrossRef] [PubMed]

Spectrochim. Acta, Part B (1)

A. Bogeaerts, Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation,” Spectrochim. Acta, Part B 60, 1280–1307 (2005).
[CrossRef]

Spectrochim. Acta, Part B: Atom. Spectrosc. (1)

A. Bogeaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta, Part B: Atom. Spectrosc. 58, 1867–1893 (2003).
[CrossRef]

Other (2)

http://http://www.bme-bergmann.de/delaygen.htm .

http://www.amplitude-technologies.com//client/document/sequoia_15.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic layout of the Polaris laser system. An oscillator and a first amplifier are followed by a grating stretcher, four ns-amplifiers and a grating compressor. The pulses are finally focused by a parabolic mirror onto the target.

Fig. 2
Fig. 2

Amplification characterization of the first regenerative amplifier A1: photo diode measurement of the circulating pulse referenced to the output energy (black line); energy calibrated photo diode measurement of the ASE while the seed was blocked at the entrance (red line); corresponding ideal amplification of the respective measurement with the averaged small signal gain (black and red circles).

Fig. 3
Fig. 3

Combined log-log plot of the ASE for times tt0 (a) and times tt0 (b) regarding the different Polaris amplifiers. The insets show the respective spatial distribution which was measured in the focal plane of the main pulse. The ASE measurements were carried out with a photo diode/oscilloscope combination while the main pulse was measured with a 3rd-order cross-correlator.

Tables (1)

Tables Icon

Table 1 Summary of the measured parameters relative peak intensity I/I0, energy E, duration τ, spot area A and q-factor of the several Polaris amplifiers as well as the average intensity Ī and fluence calculated from the measurement. The ASE parameters were carried out with the seed blocked before the amplifier to be characterized while all subsequent amplifiers were operating with their usual parameters.

Metrics