Abstract

We demonstrate a low-noise frequency down-conversion of photons at 637 nm to the telecommunication band at 1587 nm by the difference frequency generation in a periodically-poled lithium niobate. An internal conversion efficiency of the converter is estimated to be 0.44 at the maximum which is achieved by a pump power of 0.43 W, whereas a rate of internal background photons caused by the strong cw pump laser is estimated to be 9 kHz/mW within a bandwidth of about 1 nm. By using the experimental values related to the intrinsic property of the converter, and using the intensity correlation and the average photon number of a 637 nm input light pulse, we derive the intensity correlation of a converted telecom light pulse. Then we discuss feasibility of a single-photon frequency conversion to the telecommunication band for a long-distance quantum communication based on NV centers in diamond.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [CrossRef]
  2. N. Gisin, R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [CrossRef]
  3. D. N. Matsukevich, A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
    [CrossRef] [PubMed]
  4. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
    [CrossRef] [PubMed]
  5. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
    [CrossRef] [PubMed]
  6. E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
    [CrossRef] [PubMed]
  7. W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
    [CrossRef] [PubMed]
  8. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [CrossRef] [PubMed]
  9. M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012).
    [CrossRef]
  10. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
    [CrossRef]
  11. Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
    [CrossRef]
  12. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
    [CrossRef]
  13. N. Curtz, R. Thew, C. Simon, N. Gisin, H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
    [CrossRef] [PubMed]
  14. S. Zaske, A. Lenhard, C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
    [CrossRef] [PubMed]
  15. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
    [CrossRef] [PubMed]
  16. S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [CrossRef] [PubMed]
  17. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
    [CrossRef]
  18. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
    [CrossRef]
  19. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
    [CrossRef]
  20. A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
    [CrossRef]
  21. J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
    [CrossRef]
  22. M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
    [CrossRef]
  23. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
    [CrossRef]
  24. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
    [CrossRef]
  25. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [CrossRef] [PubMed]
  26. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
    [CrossRef] [PubMed]
  27. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [CrossRef]
  28. J. S. Pelc, C. Langrock, Q. Zhang, M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
    [CrossRef] [PubMed]
  29. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [CrossRef] [PubMed]
  30. S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [CrossRef] [PubMed]
  31. R. Hanbury Brown, R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956).
    [CrossRef]
  32. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [CrossRef] [PubMed]

2013 (5)

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

2012 (6)

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[CrossRef] [PubMed]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012).
[CrossRef]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

2011 (6)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

S. Zaske, A. Lenhard, C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[CrossRef] [PubMed]

M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[CrossRef]

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

2010 (8)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

J. S. Pelc, C. Langrock, Q. Zhang, M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
[CrossRef] [PubMed]

N. Curtz, R. Thew, C. Simon, N. Gisin, H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[CrossRef] [PubMed]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[CrossRef]

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

2007 (1)

N. Gisin, R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

2004 (1)

D. N. Matsukevich, A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[CrossRef] [PubMed]

1990 (1)

1956 (1)

R. Hanbury Brown, R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956).
[CrossRef]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Arend, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Asobe, M.

Babinec, T. M.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Balasubramanian, G.

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Batalov, A.

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

S. Zaske, A. Lenhard, C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[CrossRef] [PubMed]

Benson, O.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[CrossRef] [PubMed]

M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[CrossRef]

Bernien, H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Blok, M. S.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Blumoff, J.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

Bochmann, J.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Bulu, I.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Chan, I.

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Childress, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Choy, J. T.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Chu, Y.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Curtz, N.

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

Dudin, Y.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

Dudin, Y. O.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Dutt, M. V. G.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef] [PubMed]

Fejer, M. M.

Figueroa, E.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Fujiwara, M.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[CrossRef] [PubMed]

Gadeke, Friedemann

M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[CrossRef]

Gaebel, T.

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Gali, A.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef] [PubMed]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

N. Curtz, R. Thew, C. Simon, N. Gisin, H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[CrossRef] [PubMed]

N. Gisin, R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Hadden, J. P.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Hahn, C.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Hanbury Brown, R.

R. Hanbury Brown, R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956).
[CrossRef]

Hänsch, T. W.

Hanson, R.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Harrison, J. P.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Hausmann, B. J. M.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Hayes, D.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[CrossRef] [PubMed]

Hemmer, P. R.

M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012).
[CrossRef]

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Hensen, B.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Hepp, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Ho, Y.-L. D.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Hodges, J. S.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Hollenberg, L. C.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

Hong, F.-L.

Hong, S.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Ikuta, R.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Imamoglu, A.

W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef] [PubMed]

Imoto, N.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Jelezko, F.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Jetter, M.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Jiang, L.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Kato, H.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Kennedy, T.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Keßler, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Koashi, M.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Koolstra, G.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Kumar, P.

M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012).
[CrossRef]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[CrossRef] [PubMed]

Kusaka, Y.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Kuzmich, a.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

D. N. Matsukevich, A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[CrossRef] [PubMed]

Langrock, C.

Lenhard, A.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[CrossRef] [PubMed]

Loncar, M.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Lukin, M. D.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Makino, T.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

Markham, M.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Marseglia, L.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Matsukevich, D. N.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[CrossRef] [PubMed]

D. N. Matsukevich, A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[CrossRef] [PubMed]

Maunz, P.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[CrossRef] [PubMed]

Maze, J.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Michler, P.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Miki, S.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

Mizuochi, N.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Monroe, C.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[CrossRef] [PubMed]

Mücke, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Neu, E.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Neumann, P.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Neuzner, A.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Nishida, Y.

Nishikawa, T.

Noda, T.

Nölleke, C.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Nothaft, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

OBrien, J. L.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Ogura, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Okushi, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Olmschenk, S.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[CrossRef] [PubMed]

Ozawa, A.

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Patton, B. R.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Pelc, J. S.

Pfaff, W.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Radnaev, A.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Rarity, J. G.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Reichel, J.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Reiserer, A.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Rempe, G.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Ritter, S.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Robledo, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Sasaki, M.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Schröder, T.

Schulz, W.-M.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Shahriar, M. S.

M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012).
[CrossRef]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

N. Curtz, R. Thew, C. Simon, N. Gisin, H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[CrossRef] [PubMed]

Sørensen, a. S.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Stanley-Clarke, a. C.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Takesue, H.

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[CrossRef]

Takeuchi, D.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Takeuchi, S.

Taminiau, T. H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Terai, H.

S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

Thew, R.

Thew, R. O. B.

N. Gisin, R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

Tim Schroder, M. J. B.

M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[CrossRef]

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef] [PubMed]

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Trifonov, a. S.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Twiss, R. Q.

R. Hanbury Brown, R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956).
[CrossRef]

Twitchen, D. J.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

Uphoff, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Wang, Z.

S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

Wrachtrup, J.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Yacoby, A.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

Yamamoto, T.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Yamasaki, S.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Yamashita, T.

S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

Zaske, S.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[CrossRef] [PubMed]

Zbinden, H.

Zhang, Q.

Zhao, H.-Q.

Zhao, R.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Zibrov, a. S.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

Zierl, C.

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012).
[CrossRef]

Nano Lett. (1)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

N. Gisin, R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[CrossRef]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Nat. Physics (1)

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010).
[CrossRef]

Nature (5)

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[CrossRef] [PubMed]

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[CrossRef] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013).
[CrossRef] [PubMed]

R. Hanbury Brown, R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956).
[CrossRef]

New J. Phys. (3)

M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[CrossRef]

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011).
[CrossRef]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013).
[CrossRef]

Phys. Rev. A (2)

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[CrossRef]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[CrossRef]

Phys. Rev. Lett. (4)

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008).
[CrossRef]

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010).
[CrossRef]

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Science (2)

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[CrossRef] [PubMed]

D. N. Matsukevich, A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. The cw signal light at 637 nm is frequency down-converted to 1587 nm by using a strong cw pump light at 1064 nm. The converted light is diffracted by the two Bragg gratings (BGT) and detected by the SSPD.

Fig. 2
Fig. 2

(a) Conversion efficiency from 637 nm to 1587 nm as a function of the pump power P. The curve fitted to the experimental data is described by η conv max sin 2 ( κ P ) with η conv max 0.44 and κ ≈ 5.8/W.

Fig. 3
Fig. 3

(a) The observed count rates of the background photons (blue circle) and the signal photons (red triangle) depending on the rotation angle of the HWP followed by the PBS and the detector. We used the 0.30 W pump power for the measurement. The degrees of polarization of the background photons and the signal photons were 0.95 and over 0.99, respectively. The result shows that the background photons include the H polarization. (b) The dependency of the background photon rate on the pump power when the angle of the HWP is 0. By using the dark count rate of d = 220 Hz, the background photon rate is fitted to the line described by BP + d with B ≈ 135 Hz/mW.

Fig. 4
Fig. 4

The estimated g 0 , out ( 2 ) of the converted telecom light as a function of Δfil in the cases of g 0 , in ( 2 ) 0.16 (solid curves) and g 0 , in ( 2 ) = 0 (dotted curves). The measurement time is fixed to be τtime = 52ns. The four curves show the intensity correlation in the cases of in,sig = 1, 10−1, 10−2 and 10−3 from the bottom.

Fig. 5
Fig. 5

The expected observed values of g 0 , out ( 2 ) and SNR of the converted telecom light when we perform the Hanbury-Brown and Twiss experiment as a function of Δfil in the cases of g 0 , in ( 2 ) 0.16 (solid curves) and g 0 , in ( 2 ) = 0 (dotted curves). The measurement time is fixed to be τtime = 52ns. (a) The four curves show the intensity correlation in the cases of in,sig = 1, 10−1, 10−2 and 10−3 from the bottom. (b) The four curves show the SNR in the cases of in,sig = 1, 10−1, 10−2 and 10−3 from the top.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 0 , X ( 2 ) = 1 n ^ A + n ^ B 2 ( n ^ A 2 g 0 , A ( 2 ) + n ^ B 2 g 0 , B ( 2 ) + 2 n ^ A n ^ B ) .
g 0 , X ( 2 ) = 1 ( 1 + ζ ) 2 ( ζ 2 g 0 , A ( 2 ) + g 0 , B ( 2 ) + 2 ζ ) .
g 0 , out ( 2 ) = 1 ( 1 + ζ in ) 2 ( ζ in 2 g 0 , in ( 2 ) + 1 + 2 ζ in ) .
n ¯ out = T in η conv T BG 2 ( n ¯ in , sig + n ¯ in , noise ) .

Metrics