Abstract

The multiview images captured by toed-in camera array can reproduce the 3D scene vividly with appropriate positive, negative, and zero disparities. However, it is a challenging task to adjust the depth of the scene according to requirements of visual effects. In this paper, we propose a novel disparity control method based on projection to solve this problem. With the relationship between the world coordinate system and camera coordinate system, the zero disparity point in reference view is projected into other views. Thus, disparities of different views are obtained through matched corresponding points and views are shifted with calculated disparities. The proposed method is easy to implement, and the depth of toed-in multiview images can be adjusted as requirements. Experiment results show that the proposed method is effective in comparison to the conventional method, and the processed multiview images present desirable stereoscopic visual quality.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
    [CrossRef]
  2. M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
    [CrossRef] [PubMed]
  3. M. Solh, G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6(5), 495–504 (2012).
    [CrossRef]
  4. Y.-C. Fan, Y.-T. Kung, B.-L. Lin, “Three-dimensional auto-stereoscopic image recording, mapping and synthesis system for multiview 3D display,” IEEE Trans. Magn. 47(3), 683–686 (2011).
    [CrossRef]
  5. O. Eldes, K. Akşit, H. Urey, “Multi-view autostereoscopic projection display using rotating screen,” Opt. Express 21(23), 29043–29054 (2013).
    [CrossRef] [PubMed]
  6. S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
    [CrossRef]
  7. W. Kang and S. Lee, “Horizontal parallax distortion correction method in toed-in camera with wide-angle lens,” 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (2009), pp.1–4.
  8. A. Woods, T. Docherty, R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
    [CrossRef]
  9. K. C. Kwon, Y. T. Lim, N. Kim, Y.-J. Song, Y.-S. Choi, “Vergence control of binocular stereoscopic camera using disparity information,” J. Opt. Soc. Korea 13(3), 379–385 (2009).
    [CrossRef]
  10. H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).
  11. J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
    [CrossRef]
  12. Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
    [CrossRef]
  13. Y. R. Huddart, J. D. Valera, N. J. Weston, T. C. Featherstone, A. J. Moore, “Phase-stepped fringe projection by rotation about the camera’s perspective center,” Opt. Express 19(19), 18458–18469 (2011).
    [CrossRef] [PubMed]
  14. L. Wang, J. Lei, H. Zhang, K. Fan, and S. Bu, “A novel virtual view rendering approach based on DIBR,” The 7th International Conference on Computer Science & Education(Melbourne, Australia, 2012), pp.759–762.
    [CrossRef]
  15. Y. Sehoon, A. Vetro, “View synthesis prediction for multiview video coding,” Signal Process. Image Commun. 24(1), 89–100 (2009).
  16. C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
    [CrossRef]
  17. ITU-R Recommendation BT, 500–11, “Methodology for the subjective assessment of the quality of television pictures,” International Telecommunication Union, Geneva, Switzerland (2002).

2014 (1)

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

2013 (3)

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

O. Eldes, K. Akşit, H. Urey, “Multi-view autostereoscopic projection display using rotating screen,” Opt. Express 21(23), 29043–29054 (2013).
[CrossRef] [PubMed]

J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
[CrossRef]

2012 (1)

M. Solh, G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6(5), 495–504 (2012).
[CrossRef]

2011 (3)

Y.-C. Fan, Y.-T. Kung, B.-L. Lin, “Three-dimensional auto-stereoscopic image recording, mapping and synthesis system for multiview 3D display,” IEEE Trans. Magn. 47(3), 683–686 (2011).
[CrossRef]

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Y. R. Huddart, J. D. Valera, N. J. Weston, T. C. Featherstone, A. J. Moore, “Phase-stepped fringe projection by rotation about the camera’s perspective center,” Opt. Express 19(19), 18458–18469 (2011).
[CrossRef] [PubMed]

2009 (4)

Y. Sehoon, A. Vetro, “View synthesis prediction for multiview video coding,” Signal Process. Image Commun. 24(1), 89–100 (2009).

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

K. C. Kwon, Y. T. Lim, N. Kim, Y.-J. Song, Y.-S. Choi, “Vergence control of binocular stereoscopic camera using disparity information,” J. Opt. Soc. Korea 13(3), 379–385 (2009).
[CrossRef]

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

2004 (1)

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

1993 (1)

A. Woods, T. Docherty, R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Aflaki, P.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Aksit, K.

AlRegib, G.

M. Solh, G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6(5), 495–504 (2012).
[CrossRef]

Chen, L.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Choi, Y.-S.

Deng, H.

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

Docherty, T.

A. Woods, T. Docherty, R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Doshkov, D.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Eldes, O.

Fan, Y.-C.

Y.-C. Fan, Y.-T. Kung, B.-L. Lin, “Three-dimensional auto-stereoscopic image recording, mapping and synthesis system for multiview 3D display,” IEEE Trans. Magn. 47(3), 683–686 (2011).
[CrossRef]

Featherstone, T. C.

Fujii, T.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

Fukushima, N.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

Gabbouj, M.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Hannuksela, M. M.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Hou, C.

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
[CrossRef]

Huddart, Y. R.

Joachimiak, M.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Kang, S. B.

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

Kim, N.

Koch, R.

A. Woods, T. Docherty, R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Köppel, M.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Kung, Y.-T.

Y.-C. Fan, Y.-T. Kung, B.-L. Lin, “Three-dimensional auto-stereoscopic image recording, mapping and synthesis system for multiview 3D display,” IEEE Trans. Magn. 47(3), 683–686 (2011).
[CrossRef]

Kwon, K. C.

Lakshman, H.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Lan, D.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Lei, J.

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
[CrossRef]

Li, D.-H.

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

Li, H.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Li, R.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Li, S.

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

Lim, Y. T.

Lin, B.-L.

Y.-C. Fan, Y.-T. Kung, B.-L. Lin, “Three-dimensional auto-stereoscopic image recording, mapping and synthesis system for multiview 3D display,” IEEE Trans. Magn. 47(3), 683–686 (2011).
[CrossRef]

Lin, L.

J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
[CrossRef]

Merkle, P.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Moore, A. J.

Mori, Y.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

Müller, K.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Ndjiki-Nya, P.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Rusanovskyy, D.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Sehoon, Y.

Y. Sehoon, A. Vetro, “View synthesis prediction for multiview video coding,” Signal Process. Image Commun. 24(1), 89–100 (2009).

Solh, M.

M. Solh, G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6(5), 495–504 (2012).
[CrossRef]

Song, Y.-J.

Su, W.

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

Szeliski, R.

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

Tanimoto, M.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

Tao, Y.-H.

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

Urey, H.

Uyttendaele, M.

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

Valera, J. D.

Vetro, A.

Y. Sehoon, A. Vetro, “View synthesis prediction for multiview video coding,” Signal Process. Image Commun. 24(1), 89–100 (2009).

Wang, A.-H.

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

Wang, Q.-H.

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

Weston, N. J.

Wiegand, T.

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

Winder, S.

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

Woods, A.

A. Woods, T. Docherty, R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Yendo, T.

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

Yu, L.

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

Zhang, H.

J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
[CrossRef]

Zhao, W.-X.

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

Zhu, C.

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

Zitnick, C. L.

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

ACM Trans. Graph. (1)

C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph. 23(3), 600–608 (2004).
[CrossRef]

Acta. Photon. Sinica (1)

H. Deng, Q.-H. Wang, D.-H. Li, W.-X. Zhao, Y.-H. Tao, A.-H. Wang, “Disparity images acquired by parallel camera array with shift,” Acta. Photon. Sinica 38(11), 2985–2988 (2009).

IEEE J. Sel. Top. Signal Process. (1)

M. Solh, G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6(5), 495–504 (2012).
[CrossRef]

IEEE Signal Process. Lett. (1)

S. Li, J. Lei, C. Zhu, L. Yu, C. Hou, “Pixel-based inter prediction in coded texture assisted depth coding,” IEEE Signal Process. Lett. 21(1), 74–78 (2014).
[CrossRef]

IEEE Trans. Image Process. (1)

M. M. Hannuksela, D. Rusanovskyy, W. Su, L. Chen, R. Li, P. Aflaki, D. Lan, M. Joachimiak, H. Li, M. Gabbouj, “Multiview-video-plus-depth coding based on the advanced video coding standard,” IEEE Trans. Image Process. 22(9), 3449–3458 (2013).
[CrossRef] [PubMed]

IEEE Trans. Magn. (1)

Y.-C. Fan, Y.-T. Kung, B.-L. Lin, “Three-dimensional auto-stereoscopic image recording, mapping and synthesis system for multiview 3D display,” IEEE Trans. Magn. 47(3), 683–686 (2011).
[CrossRef]

IEEE Trans. Multimed. (1)

P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller, T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimed. 13(3), 453–465 (2011).
[CrossRef]

J. Opt. Soc. Korea (1)

Opt. Express (2)

Optik (Stuttg.) (1)

J. Lei, H. Zhang, C. Hou, L. Lin, “Segmentation-based adaptive vergence control for parallel multiview stereoscopic images,” Optik (Stuttg.) 124(15), 2097–2100 (2013).
[CrossRef]

Proc. SPIE (1)

A. Woods, T. Docherty, R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Signal Process. Image Commun. (2)

Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Signal Process. Image Commun. 24(1), 65–72 (2009).
[CrossRef]

Y. Sehoon, A. Vetro, “View synthesis prediction for multiview video coding,” Signal Process. Image Commun. 24(1), 89–100 (2009).

Other (3)

ITU-R Recommendation BT, 500–11, “Methodology for the subjective assessment of the quality of television pictures,” International Telecommunication Union, Geneva, Switzerland (2002).

L. Wang, J. Lei, H. Zhang, K. Fan, and S. Bu, “A novel virtual view rendering approach based on DIBR,” The 7th International Conference on Computer Science & Education(Melbourne, Australia, 2012), pp.759–762.
[CrossRef]

W. Kang and S. Lee, “Horizontal parallax distortion correction method in toed-in camera with wide-angle lens,” 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (2009), pp.1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Three types of disparity.

Fig. 2
Fig. 2

Transformation between the world coordinate and the camera coordinate.

Fig. 3
Fig. 3

The stereoscopic composite results with different numbers of virtual views: (a) num = 16, (b) num = 32, (c) num = 64, (d) num = 128.

Fig. 4
Fig. 4

Flowchart of the proposed method.

Fig. 5
Fig. 5

The principle of the ZDP projection based on 3D warping.

Fig. 6
Fig. 6

The schematic diagram of image shifting, where View 4 as reference view.

Fig. 7
Fig. 7

Examples of the test sequences. From left to right are frames No. 010, 040, and 070. (a) Ballet, and (b) Breakdancers.

Fig. 8
Fig. 8

Composite images generated from eight viewpoint images of Ballet when ZDP is selected at the central point. From left to right are frames No. 010, 040, and 070. (a) Without disparity control; (b) With proposed disparity control method.

Fig. 9
Fig. 9

Composite images generated from eight viewpoint images of Breakdancers when ZDP is selected at the central point. From left to right are frames No. 010, 040, and 070. (a) Without disparity control; (b) With proposed disparity control method.

Fig. 10
Fig. 10

Composite images after disparity control with different locations of ZDP in Ballet. From left to right are frames No. 010, 040, and 070. (a) ZDP is selected at the female dancer; (b) ZDP is selected at the male coach.

Fig. 11
Fig. 11

Composite images after disparity control with different locations of ZDP in Breakdancers. From left to right are frames No. 010, 040, and 070. (a) ZDP is selected at the left spectator; (b) ZDP is selected at the hip-hop dancer.

Fig. 12
Fig. 12

The MOS results of stereoscopic composite image.

Tables (2)

Tables Icon

Table 1 RMSE-based quantitative evaluation of matching accuracy.

Tables Icon

Table 2 The subjective quality assessment of stereoscopic composite images.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P=A[R|t]
A=[ f u γ u 0 0 f v v 0 0 0 1 ]
R=[ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ]
{ r 11 2 + r 12 2 + r 13 2 =1 r 21 2 + r 22 2 + r 23 2 =1 r 31 2 + r 32 2 + r 33 2 =1
RENDis=Dis/(num+1)
sm=PM
s[ x y 1 ]=[ f u γ u 0 0 f v v 0 0 0 1 ][ r 11 r 12 r 13 t 1 r 21 r 22 r 23 t 2 r 31 r 32 r 33 t 3 ][ X Y Z ]
[ u v w ]=[ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] [ f u γ u 0 0 f v v 0 0 0 1 ] 1 [ x y 1 ]d+[ t 1 t 2 t 3 ]
[ x' y' z' ]=[ f ' u γ' u ' 0 0 f ' v v ' 0 0 0 1 ] [ r ' 11 r ' 12 r ' 13 r ' 21 r ' 22 r ' 23 r ' 31 r ' 32 r ' 33 ] -1 [ u v w ][ t ' 1 t ' 2 t ' 3 ]
p ir = x r x i
RMSE= 1 n i=1 n l i g i 2
x i ' = x i + p ir

Metrics