Abstract

We have designed a reflective composite sheet consisting of a birefringent polymer matrix and isolated isotropic or minimally birefringent fibers. The optical properties of the sheet have been investigated in terms of the width, spacing, and thickness of the individual fibers. Commercial software (FDTD Solution) was used to simulate the reflectance of the proposed sheet, and conventional processes such as cast-film extrusion in combination with solid-state drawing were used to manufacture the multilayer composite sheet. The measured and simulated reflectance spectra confirm the feasibility of employing the sheet as a reflective polarizer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
    [CrossRef]
  2. G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
    [CrossRef]
  3. H. P. Kuo, M. Y. Chuang, C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technol. 192(1), 116–121 (2009).
    [CrossRef]
  4. T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
    [CrossRef]
  5. B.-Y. Joo, D.-H. Shin, “Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight,” Displays 31(2), 87–92 (2010).
    [CrossRef]
  6. G. R. Bird, M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50(9), 886–891 (1960).
    [CrossRef]
  7. M. Xu, H. P. Urbach, D. de Boer, H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005).
    [CrossRef] [PubMed]
  8. J.-S. Seo, T.-E. Yeom, J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Kor. 16(2), 151–156 (2012).
    [CrossRef]
  9. B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
    [CrossRef]
  10. H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
    [CrossRef]
  11. K. Totani, H. Hayashi, T. Watanabe, “Scattering-type polarizers consisting of fiber/matrix and methods to enhance polarization property,” Jpn. J. Appl. Phys. 48(8), 082403 (2009).
    [CrossRef]
  12. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
    [CrossRef] [PubMed]
  13. J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent, 5962114, October 5 (1999).
  14. Y. Li, T. X. Wu, S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Tech. 5(8), 335–340 (2009).
    [CrossRef]
  15. M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).
  16. M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
    [CrossRef]
  17. B.-W. Lee, M.-Y. Yu, J.-H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Inf. Disp. 10(1), 28–32 (2009).
    [CrossRef]
  18. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2006), Chap. 22.

2013

T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
[CrossRef]

2012

J.-S. Seo, T.-E. Yeom, J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Kor. 16(2), 151–156 (2012).
[CrossRef]

2010

B.-Y. Joo, D.-H. Shin, “Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight,” Displays 31(2), 87–92 (2010).
[CrossRef]

2009

H. P. Kuo, M. Y. Chuang, C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technol. 192(1), 116–121 (2009).
[CrossRef]

K. Totani, H. Hayashi, T. Watanabe, “Scattering-type polarizers consisting of fiber/matrix and methods to enhance polarization property,” Jpn. J. Appl. Phys. 48(8), 082403 (2009).
[CrossRef]

Y. Li, T. X. Wu, S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Tech. 5(8), 335–340 (2009).
[CrossRef]

M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
[CrossRef]

B.-W. Lee, M.-Y. Yu, J.-H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Inf. Disp. 10(1), 28–32 (2009).
[CrossRef]

2008

B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
[CrossRef]

2005

G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
[CrossRef]

G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
[CrossRef]

M. Xu, H. P. Urbach, D. de Boer, H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005).
[CrossRef] [PubMed]

2000

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

1998

H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
[CrossRef]

1960

Bastiaansen, C.

H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
[CrossRef]

Bird, G. R.

Choi, S.-W.

T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
[CrossRef]

Chuang, M. Y.

H. P. Kuo, M. Y. Chuang, C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technol. 192(1), 116–121 (2009).
[CrossRef]

Cornelissen, H.

de Boer, D.

Denker, M. E.

M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).

Derks, K.

M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).

Dirix, Y.

H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
[CrossRef]

Eakin, J. N.

B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
[CrossRef]

Fan, B.

B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
[CrossRef]

Faris, S. M.

B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
[CrossRef]

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Hayashi, H.

K. Totani, H. Hayashi, T. Watanabe, “Scattering-type polarizers consisting of fiber/matrix and methods to enhance polarization property,” Jpn. J. Appl. Phys. 48(8), 082403 (2009).
[CrossRef]

Hikmet, R.

H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
[CrossRef]

Jackson, J. N.

M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).

Jagt, H.

H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
[CrossRef]

Joo, B.-Y.

B.-Y. Joo, D.-H. Shin, “Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight,” Displays 31(2), 87–92 (2010).
[CrossRef]

Kim, G. H.

G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
[CrossRef]

G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
[CrossRef]

Kim, S.

T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
[CrossRef]

Kim, S. M.

G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
[CrossRef]

Kim, T.

T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
[CrossRef]

Kim, W. J.

G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
[CrossRef]

Ko, J.-H.

J.-S. Seo, T.-E. Yeom, J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Kor. 16(2), 151–156 (2012).
[CrossRef]

B.-W. Lee, M.-Y. Yu, J.-H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Inf. Disp. 10(1), 28–32 (2009).
[CrossRef]

M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
[CrossRef]

Kuo, H. P.

H. P. Kuo, M. Y. Chuang, C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technol. 192(1), 116–121 (2009).
[CrossRef]

Lee, B.-W.

B.-W. Lee, M.-Y. Yu, J.-H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Inf. Disp. 10(1), 28–32 (2009).
[CrossRef]

M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
[CrossRef]

Lee, J. H.

M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
[CrossRef]

Li, Y.

Y. Li, T. X. Wu, S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Tech. 5(8), 335–340 (2009).
[CrossRef]

Lim, D. Y.

T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
[CrossRef]

Lin, C. C.

H. P. Kuo, M. Y. Chuang, C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technol. 192(1), 116–121 (2009).
[CrossRef]

Merrill, W. W.

M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Parrish, M.

Ruff, A. T.

M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).

Seo, J.-S.

J.-S. Seo, T.-E. Yeom, J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Kor. 16(2), 151–156 (2012).
[CrossRef]

Shin, D.-H.

B.-Y. Joo, D.-H. Shin, “Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight,” Displays 31(2), 87–92 (2010).
[CrossRef]

Son, J. G.

G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
[CrossRef]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Totani, K.

K. Totani, H. Hayashi, T. Watanabe, “Scattering-type polarizers consisting of fiber/matrix and methods to enhance polarization property,” Jpn. J. Appl. Phys. 48(8), 082403 (2009).
[CrossRef]

Urbach, H. P.

Vartak, S.

B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
[CrossRef]

Watanabe, T.

K. Totani, H. Hayashi, T. Watanabe, “Scattering-type polarizers consisting of fiber/matrix and methods to enhance polarization property,” Jpn. J. Appl. Phys. 48(8), 082403 (2009).
[CrossRef]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Wu, S.-T.

Y. Li, T. X. Wu, S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Tech. 5(8), 335–340 (2009).
[CrossRef]

Wu, T. X.

Y. Li, T. X. Wu, S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Tech. 5(8), 335–340 (2009).
[CrossRef]

Xu, M.

Yeom, T.-E.

J.-S. Seo, T.-E. Yeom, J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Kor. 16(2), 151–156 (2012).
[CrossRef]

Yu, M.-Y.

M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
[CrossRef]

B.-W. Lee, M.-Y. Yu, J.-H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Inf. Disp. 10(1), 28–32 (2009).
[CrossRef]

Appl. Phys. Lett.

B. Fan, S. Vartak, J. N. Eakin, S. M. Faris, “Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling,” Appl. Phys. Lett. 92(6), 061101 (2008).
[CrossRef]

Displays

G. H. Kim, W. J. Kim, S. M. Kim, J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units,” Displays 26(1), 37–43 (2005).
[CrossRef]

B.-Y. Joo, D.-H. Shin, “Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight,” Displays 31(2), 87–92 (2010).
[CrossRef]

Eur. Polym. J.

G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
[CrossRef]

J. Disp. Tech.

Y. Li, T. X. Wu, S.-T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Tech. 5(8), 335–340 (2009).
[CrossRef]

J. Inf. Disp.

B.-W. Lee, M.-Y. Yu, J.-H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Inf. Disp. 10(1), 28–32 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Kor.

J.-S. Seo, T.-E. Yeom, J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Kor. 16(2), 151–156 (2012).
[CrossRef]

M.-Y. Yu, B.-W. Lee, J. H. Lee, J.-H. Ko, “Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight,” J. Opt. Soc. Kor. 13(2), 256–260 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

H. Jagt, Y. Dirix, R. Hikmet, C. Bastiaansen, “Linear polarizers based on polymer blends: Oriented blends of poly(ethylene-2,6-naphthalenedicarboxylate) and a poly(styrene/methylmethacrylate) copolymer,” Jpn. J. Appl. Phys. 37(8), 4389–4392 (1998).
[CrossRef]

K. Totani, H. Hayashi, T. Watanabe, “Scattering-type polarizers consisting of fiber/matrix and methods to enhance polarization property,” Jpn. J. Appl. Phys. 48(8), 082403 (2009).
[CrossRef]

Opt. Commun.

T. Kim, S. Kim, D. Y. Lim, S.-W. Choi, “A novel diffuser sheet comprising nanosized birefringent fibers embedded within an isotropic polymer matrix,” Opt. Commun. 295, 125–128 (2013).
[CrossRef]

Opt. Express

Powder Technol.

H. P. Kuo, M. Y. Chuang, C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technol. 192(1), 116–121 (2009).
[CrossRef]

Science

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Other

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent, 5962114, October 5 (1999).

M. E. Denker, A. T. Ruff, K. Derks, J. N. Jackson, W. W. Merrill, “Advanced polarizer film for improved performance of liquid crystal displays,” SID Int. Symp. Dig. Tech. Pap.37, 1528–1530 (2006).

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2006), Chap. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic structure of our reflective composite sheet with evenly aligned fibers embedded in a polymer matrix.

Fig. 2
Fig. 2

Multiple views of the simulation domain; the fibers of width w and thickness tf are separated by a distance d, and the matrix has a thickness of tm.

Fig. 3
Fig. 3

Simulated reflectances for sheets with different numbers of polymer layers for equal fiber widths and spacings of 100 nm.

Fig. 4
Fig. 4

Simulated reflectance spectra for fiber widths and spacings of up to (a) 200 nm and (b) 1 to 6 μm. The thickness is constant at 10 layers.

Fig. 5
Fig. 5

Simulated reflectance spectra for sheets of different thicknesses and for equal widths and spacings of (a) 100 nm and (b) 3 μm.

Fig. 6
Fig. 6

Extraordinary (●) and ordinary refractive indices (○), which are parallel and perpendicular to the drawing direction, respectively, of drawn Tritan copolymester TX2001 films as a function of the draw ratio.

Fig. 7
Fig. 7

Scanning electron micrographs of the fabricated reflective composite sheet. (a) Overall view, and (b) high-magnification image.

Fig. 8
Fig. 8

Measured reflectance spectra for different numbers of stacked reflective composite sheets. The incident light was polarized in direction (a) parallel (∥) or (b) perpendicular (⊥) to the lengths of the fibers.

Metrics