Abstract

We demonstrate novel polarization management devices in a custom-designed silicon nitride (Si3N4) on silicon-on-insulator (SOI) integrated photonics platform. In the platform, Si3N4 waveguides are defined atop silicon waveguides. A broadband polarization rotator-splitter using a TM0-TE1 mode converter in a composite Si3N4-silicon waveguide is demonstrated. The polarization crosstalk, insertion loss, and polarization dependent loss are less than −19 dB, 1.5 dB, and 1.0 dB, respectively, over a bandwidth of 80 nm. A polarization controller composed of polarization rotator-splitters, multimode interference couplers, and thin film heaters is also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
    [CrossRef]
  2. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26, 2621–2624 (1987).
    [CrossRef] [PubMed]
  3. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
    [CrossRef]
  4. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  5. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
    [CrossRef]
  6. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [CrossRef] [PubMed]
  7. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21, 18236–18248 (2013).
    [CrossRef] [PubMed]
  8. L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
    [CrossRef]
  9. C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), p. PDPC4.
  10. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544–555 (2013).
    [CrossRef] [PubMed]
  11. C. R. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in European Conference and Exhibition on Optical Communication (ECOC) (2010), p. PD 3.6.
  12. W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.
  13. L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
    [CrossRef] [PubMed]
  14. W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in CLEO: 2013 (Optical Society of America, 2013), p. CTu3F.3.
  15. W. D. Sacher, T. Barwicz, B. J. F. Taylor, J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
    [CrossRef] [PubMed]
  16. Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.
  17. D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [CrossRef] [PubMed]
  18. L. Möller, “WDM polarization controller in PLC technology,” IEEE Photon. Technol. Lett. 13, 585–587 (2001).
    [CrossRef]
  19. N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
    [CrossRef]

2014 (1)

2013 (2)

2012 (1)

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

2011 (6)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

2001 (1)

L. Möller, “WDM polarization controller in PLC technology,” IEEE Photon. Technol. Lett. 13, 585–587 (2001).
[CrossRef]

1990 (1)

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

1987 (1)

Adibi, A.

Aroca, R. A.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[CrossRef]

Atabaki, A. H.

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

Baeyens, Y.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[CrossRef]

Barton, J. S.

Barwicz, T.

W. D. Sacher, T. Barwicz, B. J. F. Taylor, J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
[CrossRef] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in CLEO: 2013 (Optical Society of America, 2013), p. CTu3F.3.

Bauters, J. F.

Blumenthal, D. J.

Bowers, J. E.

Buhl, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[CrossRef]

Buhl, L. L.

C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), p. PDPC4.

Chen, A.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[CrossRef]

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[CrossRef] [PubMed]

C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), p. PDPC4.

C. R. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in European Conference and Exhibition on Optical Communication (ECOC) (2010), p. PD 3.6.

Chen, Y.-K.

Dai, D.

Danziger, S.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

Davenport, M. L.

Doerr, C. R.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[CrossRef]

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[CrossRef] [PubMed]

C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), p. PDPC4.

C. R. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in European Conference and Exhibition on Optical Communication (ECOC) (2010), p. PD 3.6.

Doylend, J. K.

Dupuis, N.

C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), p. PDPC4.

Eftekhar, A. A.

Fang, A. W.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Gaeta, A. L.

Heck, M. J. R.

Heideman, R. G.

Henry, C. H.

Hochberg, M.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

Huang, Y.

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

John, D.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

Katz, L. E.

Kazarinov, R. F.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Lee, H. J.

Leinse, A.

Levy, J. S.

Li, Q.

Liang, D.

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Liow, T.-Y.

Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.

Lipson, M.

Lo, G.-Q.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Luo, X.

Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Mikkelsen, J. C.

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Möller, L.

L. Möller, “WDM polarization controller in PLC technology,” IEEE Photon. Technol. Lett. 13, 585–587 (2001).
[CrossRef]

Okawachi, Y.

Orlowsky, K. J.

Pinguet, T.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

Poon, J. K.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in CLEO: 2013 (Optical Society of America, 2013), p. CTu3F.3.

Poon, J. K. S.

W. D. Sacher, T. Barwicz, B. J. F. Taylor, J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
[CrossRef] [PubMed]

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

Prather, D.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

Sacher, W.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in CLEO: 2013 (Optical Society of America, 2013), p. CTu3F.3.

Sacher, W. D.

W. D. Sacher, T. Barwicz, B. J. F. Taylor, J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22, 3777–3786 (2014).
[CrossRef] [PubMed]

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Saha, K.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

Sodagar, M.

Song, J.

Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Talyor, B. J. F.

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

Taylor, B. J. F.

Tien, M.-C.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Walker, G.

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Walker, N.

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Wen, Y. H.

Xia, Z.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[CrossRef]

L. Möller, “WDM polarization controller in PLC technology,” IEEE Photon. Technol. Lett. 13, 585–587 (2001).
[CrossRef]

J. Lightwave Technol. (1)

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Nat. Photon. (3)

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photon. 6, 206–208 (2012).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (5)

C. R. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in European Conference and Exhibition on Optical Communication (ECOC) (2010), p. PD 3.6.

W. D. Sacher, Y. Huang, D. Liang, T. Barwicz, J. C. Mikkelsen, B. J. F. Talyor, G.-Q. Lo, J. K. S. Poon, “Si3N4-on-SOI polarization rotator-splitter based on TM0-TE1 mode conversion,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.3.

C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), p. PDPC4.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in CLEO: 2013 (Optical Society of America, 2013), p. CTu3F.3.

Y. Huang, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2014), p. Th1A.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the waveguide cross-sections in the Si3N4-on-SOI platform. Cross-sectional transmission electron micrographs (XTEMs) of (b) a Si strip waveguide, (c) a Si3N4 strip waveguide, and (d) a Si3N4-Si composite waveguide.

Fig. 2
Fig. 2

(a) Schematic of the Si3N4-on-SOI polarization rotator-splitter (PRS). Lengths are labeled in green; widths are labeled in red for the Si layer and in purple for the Si3N4 layer. (b) Mode profiles of the modes with the first and second highest effective indices (i.e., “mode 1” and “mode 2”) along the PRS. (c) Modal effective indices (neff) in the TM0-TE1 mode converter showing hybridization of the TM0 and TE1 modes; the Si3N4 width is fixed at 1.4 μm and the Si width is increased. The calculations in (b) and (c) were performed at a wavelength of 1550 nm.

Fig. 3
Fig. 3

Optical micrographs of the Si3N4-on-SOI PRS. (a) The whole PRS. (b) The point where the Si3N4 terminates before the adiabatic coupler; a Si3N4-Si composite waveguide is on the left of the termination and a Si waveguide is on the right.

Fig. 4
Fig. 4

PRS transmission spectra measurements at (a) the TE branch output (i.e., the top output in Fig. 2(a)) and (b) the TM branch output (i.e., the bottom output in Fig. 2(a)). The legends in (a) and (b) indicate the input and output polarizer settings (e.g., TE→TM refers to a TE-polarized input and a measurement of the TM-component of the output).

Fig. 5
Fig. 5

(a) Schematic of the polarization controller. “Δϕ” refers to a thermal phase-shifter (i.e., heater) and “3-dB MMI” is a 3-dB multimode interference coupler. (b) Optical micrograph of the polarization controller.

Fig. 6
Fig. 6

Polarization controller output polarization state measurements on the Poincaré sphere for (a) a TE-polarized input and (b) a 45° linearly polarized input. In (a), different electrical powers were dissipated in Heater 2, and for each Heater 2 power, a sweep of the Heater 3 power was performed. Similarly, in (b), the Heater 2 power was swept at different Heater 1 power settings. The heater numbering is defined in Fig. 5(b), and Px refers to the power dissipated in Heater x.

Metrics