Abstract

Radio-frequency (RF) frequency shift of incoherent light source based optoelectronic oscillator (OEO) is employed to measure the optical length change. In the proposed OEO using an incoherent light source, the optical length under test is inserted in the optoelectronic hybrid loop. The frequency shift of RF oscillation modes at the output of the OEO reflects the optical length change, with the change being measured via frequency shift analysis. Two OEO configurations are theoretically designed and experimentally performed, while an amplified spontaneous emission (ASE) source serves as the incoherent light source. A linear relationship between the frequency shift and the optical length change has been confirmed for measurement, and a reconfigurable measurement sensitivity is available by selecting different oscillation modes. Moreover, the use of ASE greatly reduces the complexity and the cost for stabilization control on light source, while the derived results are consistent with that obtained in a laser source based OEO both in the measured optical length changes and the phase noise performance. A sensitivity of −28 KHz/cm, −480 KHz/cm or higher, and a resolution of nano-meter scale are obtained, which can be used to monitor the displacement, the changes in refractive index, temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensors Technology: Devices and Technology (London, UK: Chapman & Hall, 1998).
  2. B. Culshaw, A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [CrossRef]
  3. C. Wang, J. Yao, “Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy,” J. Lightwave Technol. 29(19), 2927–2933 (2011).
    [CrossRef]
  4. X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
    [CrossRef] [PubMed]
  5. H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
    [CrossRef]
  6. X. S. Yao, L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
    [CrossRef]
  7. X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [CrossRef]
  8. W. Zhou, G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
    [CrossRef]
  9. J. M. Kim, D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express 18(14), 14905–14912 (2010).
    [CrossRef] [PubMed]
  10. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
    [CrossRef] [PubMed]
  11. A. B. Matsko, D. Eliyahu, L. Maleki, “Theory of coupled optoelectronic microwave oscillator II: phase noise,” J. Opt. Soc. Am. B 30(12), 3316–3323 (2013).
    [CrossRef]
  12. W. Li, J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
    [CrossRef]
  13. W. Li, J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [CrossRef]
  14. F. Jiang, J. H. Wong, H. Q. Lam, J. Zhou, S. Aditya, P. H. Lim, K. E. K. Lee, P. P. Shum, X. Zhang, “An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter,” Opt. Express 21(14), 16381–16389 (2013).
    [CrossRef] [PubMed]
  15. M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012).
    [CrossRef]
  16. M. Shin, P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
    [CrossRef]
  17. L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
    [CrossRef]
  18. D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
    [CrossRef]
  19. X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
    [CrossRef]
  20. H. Tsuchida, M. Suzuki, “40-Gb/s clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
    [CrossRef]
  21. S. L. Pan, J. P. Yao, “Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 27(16), 3531–3539 (2009).
    [CrossRef]
  22. Y.-C. Chi, G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microw. Theory Tech. 58(8), 2292–2298 (2010).
    [CrossRef]
  23. A. Sherman, M. Horowitz, “Ultralow-repetition-rate pulses with ultralow jitter generation by passive mode-locking of an optoelectronic oscillator,” J. Opt. Soc. Am. B 30(11), 2980–2983 (2013).
    [CrossRef]
  24. X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
    [CrossRef]
  25. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
    [CrossRef]
  26. V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
    [CrossRef]
  27. X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
    [CrossRef]
  28. P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).
  29. I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
    [CrossRef]
  30. L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010).
    [CrossRef]
  31. X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
    [CrossRef] [PubMed]

2014 (3)

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

2013 (6)

2012 (5)

D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[CrossRef]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012).
[CrossRef]

P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).

W. Li, J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[CrossRef]

2011 (3)

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

C. Wang, J. Yao, “Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy,” J. Lightwave Technol. 29(19), 2927–2933 (2011).
[CrossRef]

2010 (5)

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

J. M. Kim, D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express 18(14), 14905–14912 (2010).
[CrossRef] [PubMed]

W. Li, J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[CrossRef]

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010).
[CrossRef]

Y.-C. Chi, G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microw. Theory Tech. 58(8), 2292–2298 (2010).
[CrossRef]

2009 (2)

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

S. L. Pan, J. P. Yao, “Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 27(16), 3531–3539 (2009).
[CrossRef]

2008 (1)

2007 (1)

M. Shin, P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

2005 (2)

W. Zhou, G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[CrossRef]

H. Tsuchida, M. Suzuki, “40-Gb/s clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

1996 (1)

1994 (1)

X. S. Yao, L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[CrossRef]

Aditya, S.

Akbulut, M.

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

Azaña, J.

Ben, D.

D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[CrossRef]

Blasche, G.

W. Zhou, G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[CrossRef]

Bucholtz, F.

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

Chi, Y.-C.

Y.-C. Chi, G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microw. Theory Tech. 58(8), 2292–2298 (2010).
[CrossRef]

Cho, D.

Culshaw, B.

Delfyett, P. J.

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

Devgan, P. S.

P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

Eliyahu, D.

Hoghooghi, N.

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

Horowitz, M.

Jiang, F.

Journet, B.

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010).
[CrossRef]

Kersey, A.

Kim, J. M.

Kumar, P.

M. Shin, P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

Lam, H. Q.

Lee, K. E. K.

Li, M.

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[CrossRef] [PubMed]

M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012).
[CrossRef]

Li, W.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[CrossRef]

M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012).
[CrossRef]

W. Li, J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

W. Li, J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[CrossRef]

Lim, P. H.

Lin, G.-R.

Y.-C. Chi, G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microw. Theory Tech. 58(8), 2292–2298 (2010).
[CrossRef]

Liu, J. G.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Liu, X.

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

Lu, B.

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

Luo, B.

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

Maleki, L.

Mandridis, D.

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

Matsko, A. B.

McKinney, J. D.

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

Nakatani, K.

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010).
[CrossRef]

Nguyen, L. D.

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010).
[CrossRef]

Ozdur, I.

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

Pan, S.

D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[CrossRef]

Pan, S. L.

Pan, W.

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[CrossRef] [PubMed]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

Piracha, M. U.

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

Rao, Y. J.

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

Sherman, A.

Shin, M.

M. Shin, P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

Shum, P. P.

Sun, W. H.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

Suzuki, M.

H. Tsuchida, M. Suzuki, “40-Gb/s clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

Tang, H. Z.

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

Tsuchida, H.

H. Tsuchida, M. Suzuki, “40-Gb/s clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

Urick, V. J.

P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

Wang, C.

Wang, L. X.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Wang, W. T.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

Wang, Z. N.

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

Williams, K. J.

P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

Wong, J. H.

Yan, L.

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[CrossRef]

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[CrossRef] [PubMed]

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

Yao, J.

X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[CrossRef]

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[CrossRef] [PubMed]

M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012).
[CrossRef]

W. Li, J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[CrossRef]

C. Wang, J. Yao, “Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy,” J. Lightwave Technol. 29(19), 2927–2933 (2011).
[CrossRef]

W. Li, J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[CrossRef]

Yao, J. P.

Yao, X. S.

X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[CrossRef]

X. S. Yao, L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[CrossRef]

Zhang, W. L.

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

Zhang, X.

Zheng, D.

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

Zhou, J.

Zhou, W.

W. Zhou, G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[CrossRef]

Zhu, D.

D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[CrossRef]

Zhu, N. H.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Zhu, Y. Y.

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

Zou, X.

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[CrossRef] [PubMed]

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[CrossRef]

X. Liu, W. Pan, X. Zou, B. Luo, L. Yan, B. Lu, “A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines,” Opt. Express 20(12), 13296–13301 (2012).
[CrossRef] [PubMed]

Electron. Lett. (2)

X. S. Yao, L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[CrossRef]

V. J. Urick, P. S. Devgan, J. D. McKinney, F. Bucholtz, K. J. Williams, “Channelisation of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45(24), 1242–1243 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, W. Pan, X. Zou, L. Yan, B. Luo, B. Lu, “Investigation on tunable modulation index in the polarization-modulator-based optoelectronic oscillator,” IEEE J. Quantum Electron. 50(2), 68–73 (2014).
[CrossRef]

IEEE Photon. J. (2)

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, J. G. Liu, N. H. Zhu, “Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer,” IEEE Photon. J. 6(2), 790908 (2014).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, B. Luo, L. Yan, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5(2), 6600606 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

H. Tsuchida, M. Suzuki, “40-Gb/s clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

P. S. Devgan, V. J. Urick, K. J. Williams, “Detection of low-power signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(10), 857–859 (2012).

I. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photon. Technol. Lett. 23(4), 263–265 (2011).
[CrossRef]

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 1726–1728 (2010).
[CrossRef]

M. Li, W. Li, J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett. 24(14), 1251–1253 (2012).
[CrossRef]

M. Shin, P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

D. Zhu, S. Pan, D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (4)

W. Zhou, G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[CrossRef]

W. Li, J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[CrossRef]

Y.-C. Chi, G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microw. Theory Tech. 58(8), 2292–2298 (2010).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (3)

Opt. Express (3)

Opt. Laser Technol. (1)

H. Z. Tang, W. L. Zhang, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[CrossRef]

Opt. Lett. (2)

Other (1)

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensors Technology: Devices and Technology (London, UK: Chapman & Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Proposed incoherent source based OEOs for the measurement of optical length change. Black lines and red lines indicate the optical links and the electrical links, respectively. (ILS, incoherent light source; EOM, electro-optic modulator; PD, photo-detector; C, electrical coupler; Am: electrical amplifier).

Fig. 2
Fig. 2

Experimental setup for the first OEO in Fig. 1(a). Black lines and red lines indicate the optical links and the electrical links, respectively. (ASE, amplified spontaneous emission; Pol, polarizer; MZM, Mach-Zehnder modulator; EDFA, Er-doped fiber amplifier; OVDL, optical variable delay line; PD, photo-detector; C, electrical coupler; Am: electrical amplifier)

Fig. 3
Fig. 3

Spectrum of RF oscillation signals measured in the experiment setup in Fig. 2.

Fig. 4
Fig. 4

Relationship between the frequency shift and the optical length change for the oscillation modes around (a) 29MHz and (b) 490MHz.

Fig. 5
Fig. 5

Spectrum of oscillation signals measured in the case of using a laser source.

Fig. 6
Fig. 6

Relationship between the frequency shift and the optical length change with the use of a laser source.

Fig. 7
Fig. 7

Experimental setups for the second OEO shown in Fig. 1(b) with optical length change in (a) L 1 and (b) L 2 . (ASE, amplified spontaneous emission; MZM, Mach-Zehnder modulator; EDFA, Er-doped fiber amplifier; OVDL, optical variable delay line; PD, photo-detector; C, electrical coupler; Am: electrical amplifier)

Fig. 8
Fig. 8

Spectrum of the oscillation signals obtained from the experimental setup in Fig. 7(a).

Fig. 9
Fig. 9

Relationship between the frequency shift and the optical length change in L 1 .

Fig. 10
Fig. 10

Relationship between the frequency shift and the optical length change in L 2 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H(f)= 1 1Gexp(2πfτ)
f k = f 0 +kc/ L
Δ f k = kc ( L ) 2 ΔL
H 1 (f)= 2 2 G 1 exp(2πf τ 1 )
H 2 (f)= 1 1 H 1 (f) G 2 exp(2πf τ 2 )
Δ f k1 k 1 c ( L 1 ) 2 Δ L 1
Δ f k2 k 2 c ( L 2 ) 2 Δ L 2

Metrics