Abstract

In this paper, a low-power 1 × 2 polymeric thermo-optic switch operating at the polymer optical fiber low-loss window of 650 nm was studied. The characteristic parameters of the switch were carefully designed and simulated. The fabrication was done by using standard semiconductor fabrication techniques such as spin-coating, photolithography, and dry etching. The device was fabricated based on poly(methyl methacrylate) (PMMA)-based materials with the Mach-Zehnder interferometer (MZI) structure. The device shows an extinction ratio of over 23.4 dB at 650 nm with a very low-power consumption of 5.3 mW. The measured switching rise time and fall time are 464.4 and 448.0 µs, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009).
    [CrossRef]
  2. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [CrossRef] [PubMed]
  3. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
    [CrossRef]
  4. Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
    [CrossRef]
  5. D. Li, Y. Zhang, L. Liu, L. Xu, “Low consumption power variable optical attenuator with sol-gel derived organic/inorganic hybrid materials,” Opt. Express 14(13), 6029–6034 (2006).
    [CrossRef] [PubMed]
  6. D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
    [CrossRef]
  7. G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
    [CrossRef]
  8. P. Sun, R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
    [CrossRef] [PubMed]
  9. M. Yonemura, A. Kawasaki, S. Kato, M. Kagami, Y. Inui, “Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication,” Opt. Lett. 30(17), 2206–2208 (2005).
    [CrossRef] [PubMed]
  10. M. Asai, R. Hirose, A. Kondo, Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
    [CrossRef]
  11. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [CrossRef]
  12. X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
    [CrossRef]
  13. M. Asai, Y. Inuzuka, K. Koike, S. Takahashi, Y. Koike, “High-bandwidth graded-index plastic optical fiber with low-attenuation, high-bending ability, and high-thermal stalility for home-networks,” J. Lightwave Technol. 29(11), 1620–1626 (2011).
    [CrossRef]
  14. G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
    [CrossRef]
  15. J. S. Kee, D. P. Poenar, P. Neužil, L. Yobaş, Y. Chen, “Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18(21), 21732–21742 (2010).
    [CrossRef] [PubMed]
  16. M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
    [CrossRef]
  17. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
    [CrossRef]
  18. R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
    [CrossRef]
  19. K.-C. D. Cheng, M.-L. V. Tse, G. Zhou, C.-F. J. Pun, W.-K. E. Chan, C. Lu, P. K. A. Wai, H.-Y. Tam, “Optimization of 3-hole-assisted PMMA optical fiber with double cladding for UV-induced FBG fabrication,” Opt. Express 17(4), 2080–2088 (2009).
    [CrossRef] [PubMed]
  20. M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005).
    [CrossRef] [PubMed]
  21. G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
    [CrossRef]
  22. H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004).
    [CrossRef]
  23. C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
    [CrossRef]

2013

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

2012

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

2011

2010

P. Sun, R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
[CrossRef] [PubMed]

J. S. Kee, D. P. Poenar, P. Neužil, L. Yobaş, Y. Chen, “Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express 18(21), 21732–21742 (2010).
[CrossRef] [PubMed]

D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
[CrossRef]

G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
[CrossRef]

2009

N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

K.-C. D. Cheng, M.-L. V. Tse, G. Zhou, C.-F. J. Pun, W.-K. E. Chan, C. Lu, P. K. A. Wai, H.-Y. Tam, “Optimization of 3-hole-assisted PMMA optical fiber with double cladding for UV-induced FBG fabrication,” Opt. Express 17(4), 2080–2088 (2009).
[CrossRef] [PubMed]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
[CrossRef] [PubMed]

2008

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

2007

2006

2005

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

M. Yonemura, A. Kawasaki, S. Kato, M. Kagami, Y. Inui, “Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication,” Opt. Lett. 30(17), 2206–2208 (2005).
[CrossRef] [PubMed]

M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005).
[CrossRef] [PubMed]

R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
[CrossRef]

2004

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004).
[CrossRef]

2000

G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[CrossRef]

Ai, X.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Asai, M.

Barton, J. S.

Bennion, I.

Bozhevolnyi, S. I.

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

Bradley, D. D. C.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Chan, W.-K. E.

Cheben, P.

Chen, C.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
[CrossRef]

Chen, Y.

Cheng, K.-C. D.

Coello, V.

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

Coleman, B.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Cui, Y.

G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
[CrossRef]

Dai, X.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Delâge, A.

Densmore, A.

DeRose, C. T.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Dobb, H.

Enami, Y.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Fender, A.

Garcia, C.

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

Giaretta, G.

G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[CrossRef]

Golojuch, G.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Han, B.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Han, C.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

Han, Z.

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

Hashimoto, T.

N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009).
[CrossRef]

He, J.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Hirose, R.

Hollenbach, U.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Hu, G.

G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
[CrossRef]

Inui, Y.

Inuzuka, Y.

Janz, S.

Jen, A. K.-Y.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Ji, Y.

G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
[CrossRef]

Jones, J. D. C.

Kagami, M.

Kato, S.

Kawasaki, A.

Kee, J. S.

Koike, K.

Koike, Y.

Kondo, A.

Kugler, S.

R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
[CrossRef]

Lapointe, J.

Li, D.

Liu, L.

Liu, Z.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Lu, C.

Luo, J.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Ma, R.

MacPherson, W. N.

Mappes, T.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Mathine, D.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Mayer, B.

R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
[CrossRef]

Mohr, J.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Neužil, P.

Norwood, R. A.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Onishi, T.

G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[CrossRef]

Penty, R. V.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[CrossRef]

Peyghambarian, N.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Poenar, D. P.

Pun, C.-F. J.

Pun, E. Y. B.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004).
[CrossRef]

Radko, I. P.

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

Ramon, M.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Reano, R. M.

Reilly, M. A.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Schmid, J. H.

Silva-López, M.

Streubel, K.

R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
[CrossRef]

Sun, P.

Sun, X.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

Takahashi, S.

Tam, H.-Y.

Tanaka, M.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

Tang, H. Y.

H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004).
[CrossRef]

Tse, M.-L. V.

Urbanczyk, A.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Urbanczyk, W.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Utaka, K.

N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009).
[CrossRef]

Vachon, M.

Wai, P. K. A.

Wang, F.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
[CrossRef]

Wang, L.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

Webb, D. J.

Wegmuller, M.

G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[CrossRef]

White, I. H.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

White, W.

G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[CrossRef]

Wirth, R.

R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
[CrossRef]

Wong, W. H.

H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004).
[CrossRef]

Xia, R.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Xie, N.

N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009).
[CrossRef]

Xu, D.-X.

Xu, J.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Xu, L.

Yang, G.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

Yobas, L.

Yonemura, M.

Yuan, B.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

Yun, B.

G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
[CrossRef]

Zhang, D.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
[CrossRef]

D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
[CrossRef]

Zhang, H.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

Zhang, L.

Zhang, Y.

Zhao, D.

Zhou, G.

Appl. Phys. B

D. Zhang, C. Chen, F. Wang, D. Zhang, “Optical gain and upconversion luminescence in LaF3: Er, Yb nanoparticles-doped organic-inorganic hybrid material waveguide amplifier,” Appl. Phys. B 98(4), 791–795 (2010).
[CrossRef]

H. Y. Tang, W. H. Wong, E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B 79(1), 95–98 (2004).
[CrossRef]

C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[CrossRef]

Appl. Phys. Lett.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009).
[CrossRef]

Y. Enami, B. Yuan, M. Tanaka, J. Luo, A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett. 101(12), 123509 (2012).
[CrossRef]

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

IEEE J. Quantum Electron.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA material,” IEEE J. Quantum Electron. 49(5), 447–453 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Xie, T. Hashimoto, K. Utaka, “Very low-power, polarization-independent, and high-speed polymer thermooptic switch,” IEEE Photon. Technol. Lett. 21(24), 1861–1863 (2009).
[CrossRef]

G. Giaretta, W. White, M. Wegmuller, T. Onishi, “High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m),” IEEE Photon. Technol. Lett. 12(3), 347–349 (2000).
[CrossRef]

J. Appl. Polym. Sci.

X. Dai, J. He, Z. Liu, X. Ai, G. Yang, B. Han, J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[CrossRef]

Opt. Commun.

G. Hu, B. Yun, Y. Ji, Y. Cui, “Crosstalk reduced and low power consumption polymeric thermo-optic switch,” Opt. Commun. 283(10), 2133–2135 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. Wirth, B. Mayer, S. Kugler, K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proc. SPIE 6013, 60130F (2005).
[CrossRef]

Smart Mater. Struct.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The chemical structure of the core material.

Fig. 2
Fig. 2

DSC and TGA of the core material.

Fig. 3
Fig. 3

Absorption spectrum of the core material as a function of wavelength. The inset shows the surface topology of the film measured by AFM.

Fig. 4
Fig. 4

Refractive indices of the P(MMA-GMA)-based core and cladding as a function of wavelength.

Fig. 5
Fig. 5

(a) Schematic diagram and (b) cross-section view of AA’ in the TO region of the 1 × 2 polymeric TO switch; (c) The steady-state thermal distribution in the activity waveguide cross-section.

Fig. 6
Fig. 6

Relations between core thickness b and effective refractive indices Neff of the rib waveguide with a = 0.8b and h = 0.6b. The inset shows optical field distribution calculated by the beam propagation method (BPM).

Fig. 7
Fig. 7

SEM image of the rib waveguide without upper cladding.

Fig. 8
Fig. 8

(a) The measuring process of the device; (b) The relative output patterns of the device without electrical power applied; (c) The relative output patterns of the device with switching power applied

Fig. 9
Fig. 9

The relative output powers versus driving power.

Fig. 10
Fig. 10

Switching response from (a) port 1 and (b) port 2 of the device on a rectangular wave.

Metrics