Abstract

Abstract: We have demonstrated a broadband waveguide polariser with high extinction ratio on a polymer optical waveguide coated with graphene oxide via the drop-casting method. The highest extinction ratio of nearly 40 dB is measured at 1590 nm, with a variation of 4.5 dB across a wavelength range from 1530 nm to 1630 nm, a ratio that is (to our knowledge) the highest reported for graphene-based waveguide polarisers to date. This result is achieved with a graphene oxide coating length along the propagation direction of only 1.3 mm and a bulk film thickness of 2.0 µm. The underlying principles of the strongly polarisation dependent propagation loss demonstrated have been studied and are attributed to the anisotropic complex dielectric function of graphene oxide bulk film.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hutchings, B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. 3, 450 (2011).
  2. K. Kikuchi, S. Tsukamoto, “Evaluation of sensitivity of the digital coherent receiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
    [CrossRef]
  3. S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
    [CrossRef]
  4. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
    [CrossRef]
  5. J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
    [CrossRef]
  6. A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
    [CrossRef]
  7. H. Lin, J. Ning, G. Fan, “A waveguide polarizer based on Si-coated Ti:LiNbO3 planar structure,” Chin. Opt. Lett. 2, 89 (2004).
  8. D. Dai, Z. Wang, N. Julian, J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
    [CrossRef] [PubMed]
  9. J. R. Feth, C. L. Chang, “Metal-clad fiber-optic cutoff polarizer,” Opt. Lett. 11(6), 386–388 (1986).
    [CrossRef] [PubMed]
  10. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [CrossRef]
  11. J. T. Kim, S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
    [CrossRef] [PubMed]
  12. J. T. Kim, C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
    [CrossRef] [PubMed]
  13. P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
    [CrossRef] [PubMed]
  14. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
    [CrossRef] [PubMed]
  15. G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
    [CrossRef]
  16. N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
    [CrossRef] [PubMed]
  17. A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006).
    [CrossRef] [PubMed]
  18. A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
    [CrossRef]
  19. M. Vaupel, U. Stoberl, “Appication note: graphene and graphene oxide,” http://www.nanofilm.de/sales-support/downloads/application-notes/applicationnote_graphene.pdf .
  20. K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [CrossRef] [PubMed]
  21. J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J.-Y. Park, S. Lee, Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
    [CrossRef] [PubMed]
  22. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]

2013 (3)

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J.-Y. Park, S. Lee, Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (4)

J. T. Kim, S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
[CrossRef] [PubMed]

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

D. C. Hutchings, B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. 3, 450 (2011).

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

2010 (2)

K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

D. Dai, Z. Wang, N. Julian, J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006).
[CrossRef] [PubMed]

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

2004 (1)

1999 (2)

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

1998 (2)

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

1996 (1)

1986 (1)

Ahn, Y. H.

Anthopoulos, T. D.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Bell, A. J.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Benech, P.

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

Boehm, H. P.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

Bose, D.

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

Bowers, J. E.

Bricheno, T.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Buchsteiner, A.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006).
[CrossRef] [PubMed]

Chang, C. L.

Chhowalla, M.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Chia, C. H.

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

Choi, C.-G.

Choi, S.-Y.

Colleaux, F.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

Cureton, C.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Dai, D.

Davies, M.

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

Davis, K. M.

Day, S.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Dekany, I.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

Delage, A.

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

Dikin, D. A.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Dommett, G. H. B.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Eda, G.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Erickson, L.

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

Evmenenko, G.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Fan, G.

Feth, J. R.

Ghaffarzadeh, K.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

He, J. J.

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

Hirao, K.

Holmes, B. M.

D. C. Hutchings, B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. 3, 450 (2011).

Hong, J. T.

Huang, N. M.

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

Hunziker, W.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

Hutchings, D. C.

D. C. Hutchings, B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. 3, 450 (2011).

Julian, N.

Kikuchi, K.

Kim, J. T.

Koteles, E. S.

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

Lamontagne, B.

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

Lanker, M.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

Lee, K. M.

Lee, S.

Lerf, A.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006).
[CrossRef] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Lim, H. N.

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

Lin, H.

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Ma, R.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Melchior, H.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

Miura, K.

Morand, A.

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

Moule, D.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Muhamad, M. R.

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

Nadler, C. K.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

Nathan, A.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

Nguyen, S. T.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Ning, J.

Ohja, S. M.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Park, D. J.

Park, J.-Y.

Park, S. J.

Pieper, J.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006).
[CrossRef] [PubMed]

Piner, R. D.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Ruoff, R. S.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Sanchez-Perez, C.

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

Sasaki, T.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Schöttl, S.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

Son, B. H.

Stankovich, S.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Sugimoto, N.

Sun, P.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Szabo, T.

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Taylor, J.

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

Tedjini, S.

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

Tsukamoto, S.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Wang, K.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Wang, W.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Wang, Z.

Wei, J.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Wildermuth, E. K.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

Wöbkenberg, P.

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

Wu, D.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Yarmo, M. A.

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Zhong, M.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Zhu, H.

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Zimney, E. J.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, M. Chhowalla, “Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,” Appl. Phys. Lett. 102(13), 133108 (2013).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34(1), 78–79 (1998).
[CrossRef]

IEEE J. Sel. Top. Quant (1)

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quant 5(5), 1407–1412 (1999).
[CrossRef]

IEEE Photon. (1)

D. C. Hutchings, B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. 3, 450 (2011).

IEEE Photon. Technol. Lett. (2)

J. J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11(2), 224–226 (1999).
[CrossRef]

A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose, “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,” IEEE Photon. Technol. Lett. 10(11), 1599–1601 (1998).
[CrossRef]

Int. J. Nanomedicine (1)

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad, “Simple room-temperature preparation of high-yield large-area graphene oxide,” Int. J. Nanomedicine 6, 3443–3448 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

A. Buchsteiner, A. Lerf, J. Pieper, “Water dynamics in graphite oxide investigated with neutron scattering,” J. Phys. Chem. B 110(45), 22328–22338 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. Solids (1)

A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H. P. Boehm, “Hydration behavior and dynamics of water molecules in graphite oxide,” J. Phys. Chem. Solids 67(5-6), 1106–1110 (2006).
[CrossRef]

Nanotechnology (1)

P. Sun, R. Ma, K. Wang, M. Zhong, J. Wei, D. Wu, T. Sasaki, H. Zhu, “Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania,” Nanotechnology 24(7), 075601 (2013).
[CrossRef] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, W. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Nature (1)

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Other (1)

M. Vaupel, U. Stoberl, “Appication note: graphene and graphene oxide,” http://www.nanofilm.de/sales-support/downloads/application-notes/applicationnote_graphene.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Graphene Oxide waveguide polariser. a) Schematic diagram of the proposed GO waveguide polariser structure. b) Top view of drop-cast GO coating with different number of solution drops. The diameter of the coating remained similar while the thickness of the coating increased with the number of solution drops applied, as indicated by the increase in opacity of the coating region. c) Surface mapping of drop-cast GO coating (2 solution drop) on polymer waveguide channel, showing similar height coverage of GO coating on the waveguide channel and region surrounding the waveguide channel. Ridges across the GO coating region are the result of local folding of the GO film formed after the drying process. d) SEM image of a GO-coated waveguide channel, in which air gaps are observed between the sidewalls of the waveguide and the GO film. e) Orderly stacking of drop-cast GO layers, indicating the formation of GO ‘paper’ using the drop-casting method. f) XRD spectrum of the GO ‘paper’ indicates an interlayer gap of about 1.03 nm.

Fig. 2
Fig. 2

Simulation of GO waveguide polariser. a) Illustration of GO-coated waveguide channel cross section. The waveguide channel cross section has a dimension of 5 μm in height and 10 μm in widths. GO coating thickness depends on the number of GO solution applied during drop casting. The maximum air gap between the waveguide channel sidewall and the GO film is 0.5 μm at the base of the channel. b) The simulated modal electric field component distributions in the waveguide channel for TE- and TM-polarised light show guiding of TM-polarised field in the GO film, while the TE-polarised light coupled into the GO film is highly damped. The GO thickness used was 2.0 μm. The wavelength used in the simulation is 1550 nm.

Fig. 3
Fig. 3

Polarising effect of GO-coated waveguides. a) Polar plot of the GO waveguide polariser measured at 1550 nm. The insertion loss is lowest when the incident light is highly TM-polarised, indicating a TM-pass waveguide polariser. b) Insertion loss of TE- and TM-polarised light of waveguide polarisers coated with different number of GO solution drops corresponding to different GO film thickness. Both values are measurement averages in the 1530 to 1630 nm wavelength range. c) Top view of GO coated waveguide channel with TM- and TE- polarised light (650 nm) propagating through the waveguide. There was no observable scattering in the case of TE-polarised light, while the observed scattering in the case of TM-polarised light propagation was highly p-polarised. d) Broadband response of GO waveguide polariser, where an extinction ratio of more than 20 dB is measured from 1250 – 1640 nm.

Metrics