Abstract

Heterojunction devices of Ge1-xSnx / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge1-xSnx alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge1-xSnx devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge1-xSnx photodetectors may have practical applications in the near/mid IR wavelength regime.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
n-Type GaAs/AlGaAs heterostructure detector with a 3.2 THz threshold frequency

Aruna Weerasekara, Mohamad Rinzan, Steven Matsik, A. G. Perera, Margaret Buchanan, Hui Chun Liu, Greg von Winckel, Andreas Stintz, and Sanjay Krishna
Opt. Lett. 32(10) 1335-1337 (2007)

Terahertz frontside-illuminated quantum-well photodetector

Mikhail Patrashin and Iwao Hosako
Opt. Lett. 33(2) 168-170 (2008)

Si rib waveguide photodetector with an ordered array of Ge islands for 1.5 μm

Ventsislav Lavchiev, Roman Holly, Gang Chen, Friedrich Schäffler, Rüdiger Goldhahn, and Wolfgang Jantsch
Opt. Lett. 34(24) 3785-3787 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  2. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  3. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  4. S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
    [Crossref]
  5. J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  6. P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
    [Crossref]
  7. D. Jenkins and J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
    [Crossref]
  8. R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
    [Crossref]
  9. G. Chang, S. Chang, and S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
    [Crossref]
  10. H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
    [Crossref]
  11. J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
    [Crossref]
  12. N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
    [Crossref]
  13. S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
    [Crossref]
  14. N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
    [Crossref]
  15. M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
    [Crossref]

2014 (1)

N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[Crossref]

2013 (5)

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

2011 (3)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

2010 (3)

G. Chang, S. Chang, and S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2007 (2)

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

1987 (1)

D. Jenkins and J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[Crossref]

Adam, T.

N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

Beeler, R.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Bhargava, N.

N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[Crossref]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Cao, Q.

Chang, G.

G. Chang, S. Chang, and S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Chang, S.

G. Chang, S. Chang, and S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Cheng, B.

Cheng, H.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

Chuang, S.

G. Chang, S. Chang, and S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Coppinger, M.

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Dow, J.

D. Jenkins and J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[Crossref]

Gupta, J.

N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[Crossref]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

Harrison, P.

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Hart, J.

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Hu, W.

Ikonic, Z.

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Jenkins, D.

D. Jenkins and J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[Crossref]

Kaschel, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kim, S.

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Kimerling, L.

J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Kolodzey, J.

N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[Crossref]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Kouvetakis, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Li, H.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

Liu, J.

J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Mashanov, V.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

Mathews, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Menéndez, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Michel, J.

J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Moontragoon, P.

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Nakatsuka, O.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

Oehme, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Ogawa, M.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

Roucka, R.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Sakai, A.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schulze, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Soref, R.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Su, S.

Sun, G.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

Takeuchi, S.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

Tolle, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Tseng, H.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

Wang, Q.

Wang, W.

Weng, C.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Wielunski, L.

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

Wu, K.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

Xue, C.

Xue, H.

Yamamoto, K.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

Zaima, S.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

Zhang, G.

Zuo, Y.

Appl. Phys. Lett. (5)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, and R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[Crossref]

J. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[Crossref]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, and J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[Crossref]

G. Chang, S. Chang, and S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

J. Electron. Mater. (1)

N. Bhargava, J. Gupta, T. Adam, and J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[Crossref]

Nat. Photonics (2)

J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

D. Jenkins and J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[Crossref]

Semicond. Sci. Technol. (2)

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[Crossref]

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for photocurrent spectroscopy using an IR source (Globar) and optical chopper. The Ge1-xSnx device is held at temperature T on a cryostat. A lock-in amplifier and Thermo-Nicolet 870 FTIR were used to measure the spectral response. (b) Diagram of the Ge1-xSnx / n-Ge heterojunction device structure showing top and bottom metal contacts.

Fig. 2
Fig. 2

Photocurrent response of a Ge0. 902Sn0.098/ n-Ge heterojunction device at 100K (sample B, with 9.8%Sn): Increasing reverse-biased voltage resulted in larger amplitude of photocurrent that saturated at higher reverse voltages. The inset shows the dark current-voltage characteristics of several Ge1-xSnx devices with different Sn compositions.

Fig. 3
Fig. 3

Spectral photoresponse in mid-IR regime of Ge1-xSnx/ n-Ge heterojunction devices, with different Sn compositions, at 100K. The response peaks lie at 0.619eV (sample C 12% Sn), 0.681eV(sample B 9.8% Sn), 0.765eV(sample A 4% Sn), and 0.872eV(pure Ge sample D, 0% Sn) respectively.

Metrics