Abstract

Heterojunction devices of Ge1-xSnx / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge1-xSnx alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge1-xSnx devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge1-xSnx photodetectors may have practical applications in the near/mid IR wavelength regime.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [CrossRef]
  2. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [CrossRef] [PubMed]
  3. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [CrossRef]
  4. S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
    [CrossRef]
  5. J. Michel, J. Liu, L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  6. P. Moontragoon, Z. Ikonic, P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
    [CrossRef]
  7. D. Jenkins, J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
    [CrossRef]
  8. R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
    [CrossRef]
  9. G. Chang, S. Chang, S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
    [CrossRef]
  10. H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
    [CrossRef]
  11. J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
    [CrossRef]
  12. N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
    [CrossRef]
  13. S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
    [CrossRef]
  14. N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
    [CrossRef]
  15. M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
    [CrossRef]

2014

N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[CrossRef]

2013

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

2011

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[CrossRef] [PubMed]

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

2010

G. Chang, S. Chang, S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

J. Michel, J. Liu, L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

2007

P. Moontragoon, Z. Ikonic, P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[CrossRef]

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

1987

D. Jenkins, J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[CrossRef]

Adam, T.

N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[CrossRef]

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

Beeler, R.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Bhargava, N.

N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[CrossRef]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

Cao, Q.

Chang, G.

G. Chang, S. Chang, S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[CrossRef]

Chang, S.

G. Chang, S. Chang, S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[CrossRef]

Cheng, B.

Cheng, H.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

Chuang, S.

G. Chang, S. Chang, S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[CrossRef]

Coppinger, M.

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

Dow, J.

D. Jenkins, J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[CrossRef]

Gupta, J.

N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[CrossRef]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

Harrison, P.

P. Moontragoon, Z. Ikonic, P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[CrossRef]

Hart, J.

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

Hu, W.

Ikonic, Z.

P. Moontragoon, Z. Ikonic, P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[CrossRef]

Jenkins, D.

D. Jenkins, J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[CrossRef]

Kaschel, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Kasper, E.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Kim, S.

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

Kimerling, L.

J. Michel, J. Liu, L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Kolodzey, J.

N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[CrossRef]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

Kouvetakis, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Li, H.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

Liu, J.

J. Michel, J. Liu, L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Mashanov, V.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

Mathews, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Menéndez, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Michel, J.

J. Michel, J. Liu, L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Moontragoon, P.

P. Moontragoon, Z. Ikonic, P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[CrossRef]

Nakatsuka, O.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Oehme, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Ogawa, M.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Roucka, R.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Sakai, A.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Schmid, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Schulze, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Soref, R.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

Su, S.

Sun, G.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

Takeuchi, S.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Tolle, J.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Tseng, H.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

Wang, Q.

Wang, W.

Weng, C.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Wielunski, L.

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

Wu, K.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

Xue, C.

Xue, H.

Yamamoto, K.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Zaima, S.

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Zhang, G.

Zuo, Y.

Appl. Phys. Lett.

H. Tseng, K. Wu, H. Li, V. Mashanov, H. Cheng, G. Sun, R. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922 Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett. 102(18), 182106 (2013).
[CrossRef]

J. Gupta, N. Bhargava, S. Kim, T. Adam, J. Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(25), 251117 (2013).
[CrossRef]

N. Bhargava, M. Coppinger, J. Gupta, L. Wielunski, J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[CrossRef]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, J. Kolodzey, “Photoconductivity of Germanium Tin Alloys grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[CrossRef]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

IEEE Electron Device Lett.

S. Kim, J. Gupta, N. Bhargava, M. Coppinger, J. Kolodzey, “Current-Voltage Characteristics of Ge/Sn Heterojunction Diodes Grown by Molecular Beam Epitaxy,” IEEE Electron Device Lett. 34(10), 1217–1219 (2013).
[CrossRef]

IEEE J. Quantum Electron.

R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “Development of high performance near IR photodiodes: A novel chemistry based approach to Ge-Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011).
[CrossRef]

G. Chang, S. Chang, S. Chuang, “Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[CrossRef]

J. Electron. Mater.

N. Bhargava, J. Gupta, T. Adam, J. Kolodzey, “Structural Properties of Boron-Doped Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,” J. Electron. Mater. 43(4), 931–937 (2014).
[CrossRef]

Nat. Photonics

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

J. Michel, J. Liu, L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Opt. Express

Phys. Rev. B

D. Jenkins, J. Dow, “Electronic properties of metastable GexSn1-x alloys,” Phys. Rev. B 36(15), 7994–8000 (1987).
[CrossRef]

Semicond. Sci. Technol.

P. Moontragoon, Z. Ikonic, P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[CrossRef]

S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22(1), S231–S235 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for photocurrent spectroscopy using an IR source (Globar) and optical chopper. The Ge1-xSnx device is held at temperature T on a cryostat. A lock-in amplifier and Thermo-Nicolet 870 FTIR were used to measure the spectral response. (b) Diagram of the Ge1-xSnx / n-Ge heterojunction device structure showing top and bottom metal contacts.

Fig. 2
Fig. 2

Photocurrent response of a Ge0. 902Sn0.098/ n-Ge heterojunction device at 100K (sample B, with 9.8%Sn): Increasing reverse-biased voltage resulted in larger amplitude of photocurrent that saturated at higher reverse voltages. The inset shows the dark current-voltage characteristics of several Ge1-xSnx devices with different Sn compositions.

Fig. 3
Fig. 3

Spectral photoresponse in mid-IR regime of Ge1-xSnx/ n-Ge heterojunction devices, with different Sn compositions, at 100K. The response peaks lie at 0.619eV (sample C 12% Sn), 0.681eV(sample B 9.8% Sn), 0.765eV(sample A 4% Sn), and 0.872eV(pure Ge sample D, 0% Sn) respectively.

Metrics