Abstract

We investigated collisions of nitrogen and argon gas mixture with energetic electrons accelerated by Bragg incident intense infrared femtosecond laser pulses in ultraviolet filamentary plasma gratings. Significant decrease of fluorescence spectra of argon atoms were observed when a small amount of nitrogen gas was mixed with argon gas that facilitated observable argon-nitrogen collisions. We experimentally measured the fluorescence emission from the argon and nitrogen gas mixture under different driving pulse energies, the fluorescence decay dynamics after the impact excitation, as well as the fluorescence intensity dependence on the nitrogen and argon pressures. The experimental measurements were based on the electron acceleration and its subsequent impact with the gas mixture in the filamentary plasma gratings, which was essential for the observation of the dominant dissociative recombination in the gas mixture.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965).
    [CrossRef]
  2. S. Tzortzakis, G. Méchain, G. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, P. Encrenaz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27(21), 1944–1946 (2002).
    [CrossRef] [PubMed]
  3. B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31(17), 2601–2603 (2006).
    [CrossRef] [PubMed]
  4. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
    [CrossRef]
  5. A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
    [CrossRef] [PubMed]
  6. X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
    [CrossRef] [PubMed]
  7. Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
    [CrossRef]
  8. Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
    [CrossRef] [PubMed]
  9. C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
    [CrossRef] [PubMed]
  10. X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
    [CrossRef]
  11. X. Yang, J. Wu, Y. Peng, S. Yuan, and H. Zeng, “Experimental observation of noncollinear coupling of filaments in air,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (Optical Society of America, 2008), paper CTuE6.
  12. H. Wu, T. Yang, Y. Wang, L. Ding, “Background-free third-order harmonic generation induced by dynamic gratings in dual filaments,” J. Opt. Soc. Am. B 26(4), 645–649 (2009).
    [CrossRef]
  13. X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
    [CrossRef]
  14. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
    [CrossRef]
  15. L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
    [CrossRef] [PubMed]
  16. L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
    [CrossRef]
  17. L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
    [CrossRef] [PubMed]
  18. A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [CrossRef]
  19. M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
    [CrossRef]
  20. Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35(1), 31–54 (2006).
    [CrossRef]
  21. V. Puech, L. Torchin, “Collision cross sections and electron swarm parameters in argon,” J. Phys. D Appl. Phys. 19(12), 2309–2323 (1986).
    [CrossRef]
  22. M. N. Shneider, A. Baltuska, A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110(8), 083112 (2011).
    [CrossRef]
  23. A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
    [CrossRef] [PubMed]
  24. J. Liu, X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103(23), 235002 (2009).
    [CrossRef] [PubMed]
  25. P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
    [CrossRef]

2013 (2)

L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[CrossRef] [PubMed]

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

2011 (3)

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

M. N. Shneider, A. Baltuska, A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110(8), 083112 (2011).
[CrossRef]

2010 (3)

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

2009 (6)

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

H. Wu, T. Yang, Y. Wang, L. Ding, “Background-free third-order harmonic generation induced by dynamic gratings in dual filaments,” J. Opt. Soc. Am. B 26(4), 645–649 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
[CrossRef] [PubMed]

J. Liu, X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103(23), 235002 (2009).
[CrossRef] [PubMed]

2008 (1)

A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
[CrossRef] [PubMed]

2007 (3)

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
[CrossRef]

2006 (3)

Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35(1), 31–54 (2006).
[CrossRef]

B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31(17), 2601–2603 (2006).
[CrossRef] [PubMed]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

2002 (1)

1986 (1)

V. Puech, L. Torchin, “Collision cross sections and electron swarm parameters in argon,” J. Phys. D Appl. Phys. 19(12), 2309–2323 (1986).
[CrossRef]

1965 (1)

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965).
[CrossRef]

Abdollahpour, D.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[CrossRef]

André, Y.-B.

Antonsen, T. M.

A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
[CrossRef] [PubMed]

Arnold, C. L.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Bagchi, S.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Bai, D.

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

Baltuska, A.

M. N. Shneider, A. Baltuska, A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110(8), 083112 (2011).
[CrossRef]

Beaudin, G.

Biegert, J.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

Buersing, H.

Chen, P.

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

Chen, S.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

Chen, S.-Y.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Compton, R.

A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
[CrossRef] [PubMed]

Couairon, A.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31(17), 2601–2603 (2006).
[CrossRef] [PubMed]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

Ding, L.

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[CrossRef] [PubMed]

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

H. Wu, T. Yang, Y. Wang, L. Ding, “Background-free third-order harmonic generation induced by dynamic gratings in dual filaments,” J. Opt. Soc. Am. B 26(4), 645–649 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

Durand, M.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

Eberle, B.

Encrenaz, P.

Filin, A.

A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
[CrossRef] [PubMed]

Forestier, B.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

Franco, M.

Gheudin, M.

Hauri, C. P.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

Helbing, F. W.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

Houard, A.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

Itikawa, Y.

Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35(1), 31–54 (2006).
[CrossRef]

Keller, U.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

Kelley, P. L.

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965).
[CrossRef]

Kiran, P. P.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Kornelis, W.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

Krenz, M.

Krishnan, S. R.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Kumar, G. R.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Kuo, C.-C.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Lee, K.-H.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Levis, R. J.

A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
[CrossRef] [PubMed]

Li, W.

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[CrossRef] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

Lin, J.-Y.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Lin, M.-W.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Liu, J.

J. Liu, X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103(23), 235002 (2009).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

Lu, P.

Lu, X.

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

Méchain, G.

Milchberg, H. M.

A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
[CrossRef] [PubMed]

Munier, J.-M.

Mysyrowicz, A.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31(17), 2601–2603 (2006).
[CrossRef] [PubMed]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

S. Tzortzakis, G. Méchain, G. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, P. Encrenaz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27(21), 1944–1946 (2002).
[CrossRef] [PubMed]

Pai, C.-H.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Palastro, J. P.

A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
[CrossRef] [PubMed]

Papazoglou, D. G.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[CrossRef]

Patalano, G.

Peng, Y.

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

Perrin, J. M.

M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
[CrossRef]

Prade, B.

Puech, V.

V. Puech, L. Torchin, “Collision cross sections and electron swarm parameters in argon,” J. Phys. D Appl. Phys. 19(12), 2309–2323 (1986).
[CrossRef]

Rolin, M. N.

M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
[CrossRef]

Romanov, D. A.

A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
[CrossRef] [PubMed]

Rostaing, J. C.

M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
[CrossRef]

Seiffer, D.

Shabunya, S. I.

M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
[CrossRef]

Shi, L.

L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[CrossRef] [PubMed]

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

Shneider, M. N.

M. N. Shneider, A. Baltuska, A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110(8), 083112 (2011).
[CrossRef]

Suntsov, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[CrossRef]

Tong, Y.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

Torchin, L.

V. Puech, L. Torchin, “Collision cross sections and electron swarm parameters in argon,” J. Phys. D Appl. Phys. 19(12), 2309–2323 (1986).
[CrossRef]

Tzortzakis, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[CrossRef]

S. Tzortzakis, G. Méchain, G. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, P. Encrenaz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27(21), 1944–1946 (2002).
[CrossRef] [PubMed]

Vasseur, O.

Wang, D.

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

Wang, J.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

Wang, Y.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

H. Wu, T. Yang, Y. Wang, L. Ding, “Background-free third-order harmonic generation induced by dynamic gratings in dual filaments,” J. Opt. Soc. Am. B 26(4), 645–649 (2009).
[CrossRef]

Wu, H.

Wu, J.

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

Xu, Z.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

Yang, T.

Yang, X.

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

York, A. G.

A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
[CrossRef] [PubMed]

Yuan, S.

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

Zeng, H.

L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[CrossRef] [PubMed]

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[CrossRef] [PubMed]

Zhang, X. C.

J. Liu, X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103(23), 235002 (2009).
[CrossRef] [PubMed]

Zhang, Y.

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

Zheltikov, A. M.

M. N. Shneider, A. Baltuska, A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110(8), 083112 (2011).
[CrossRef]

Zhou, H.

L. Shi, W. Li, H. Zhou, L. Ding, H. Zeng, “Impact excitation of neon atoms by heated seed electrons in filamentary plasma gratings,” Opt. Lett. 38(4), 398–400 (2013).
[CrossRef] [PubMed]

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett. 98(11), 111103 (2011).
[CrossRef]

X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett. 95(11), 111103 (2009).
[CrossRef]

X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett. 97(7), 071108 (2010).
[CrossRef]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94(25), 251104 (2009).
[CrossRef]

J. Appl. Phys. (1)

M. N. Shneider, A. Baltuska, A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110(8), 083112 (2011).
[CrossRef]

J. Mod. Opt. (1)

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35(1), 31–54 (2006).
[CrossRef]

J. Phys. D Appl. Phys. (1)

V. Puech, L. Torchin, “Collision cross sections and electron swarm parameters in argon,” J. Phys. D Appl. Phys. 19(12), 2309–2323 (1986).
[CrossRef]

Opt. Lett. (4)

Phys. Rep. (1)

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. A (2)

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, A. Couairon, “Focal dynamics of multiple filaments: microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

L. Shi, W. Li, D. Bai, H. Zhou, D. Wang, L. Ding, H. Zeng, “Enhanced fluorescence emission of helium atoms by seeded optically driven impact excitation,” Phys. Rev. A 88(1), 013418 (2013).
[CrossRef]

Phys. Rev. Lett. (7)

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[CrossRef] [PubMed]

A. G. York, H. M. Milchberg, J. P. Palastro, T. M. Antonsen, “Direct acceleration of electrons in a corrugated plasma waveguide,” Phys. Rev. Lett. 100(19), 195001 (2008).
[CrossRef] [PubMed]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[CrossRef] [PubMed]

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98(3), 033901 (2007).
[CrossRef] [PubMed]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965).
[CrossRef]

A. Filin, R. Compton, D. A. Romanov, R. J. Levis, “Impact-ionization cooling in laser-induced plasma filaments,” Phys. Rev. Lett. 102(15), 155004 (2009).
[CrossRef] [PubMed]

J. Liu, X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103(23), 235002 (2009).
[CrossRef] [PubMed]

Plasma Sources Sci. Technol. (1)

M. N. Rolin, S. I. Shabunya, J. C. Rostaing, J. M. Perrin, “Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure,” Plasma Sources Sci. Technol. 16(3), 480–491 (2007).
[CrossRef]

Other (1)

X. Yang, J. Wu, Y. Peng, S. Yuan, and H. Zeng, “Experimental observation of noncollinear coupling of filaments in air,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (Optical Society of America, 2008), paper CTuE6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic experimental setup for electron-atom collision in ultraviolet filamentary plasma gratings established by two noncollinearly crossed TH filaments. Intense FW pulses were incident into the plasma gratings at the 1st Bragg angle. The gas mixture was controlled with various argon and nitrogen gas pressures.

Fig. 2
Fig. 2

Measured fluorescence spectra from TH plasma gratings in 0.5 atm Ar (lower black curve), from TH plasma gratings with Bragg incident FW pulses in 0.5 atm Ar (middle blue curve) and in 0.5 atm Ar mixed with 0.5 atm N2 (upper red curve).

Fig. 3
Fig. 3

(a) Measured intensity of integrated continuum background (blue squares) and argon fluorescence spectra at 706.7 nm (red circles) from the mixture gases as a function of nitrogen gas pressure with argon gas fixed at 0.5 atm. Inset, the estimated electron density as a function of nitrogen gas pressure with argon gas fixed at 0.5 atm. (b) Measured intensity of ionic argon fluorescence spectra at 358.8 nm (red circles), atomic nitrogen spectra at 904.9 nm (blue squares) and ionic nitrogen spectra at 500.5 nm (olive triangles).

Fig. 4
Fig. 4

Measured intensity of spectra emission from the gas mixture of 0.5 atm fixed nitrogen gas pressure and various argon gas pressure: (a) integrated continuum background (black circles), argon atomic fluorescence spectra at 706.7 nm (blue triangles), argon ionic fluorescence spectra at 358.8 nm (red squares); (b) nitrogen atomic fluorescence spectra at 904.9 nm (blue squares) and nitrogen ionic fluorescence spectra at 500.5 nm (red circles).

Fig. 5
Fig. 5

(a) FW pulse energy dependence of the background continuum intensity (black squares) and nitrogen fluorescence spectra at 500.5 nm (blue circles). (b) Experimentally measured dependence of nitrogen fluorescence intensity on the time delay between the FW and plasma-grating-forming TH laser pulses in the nitrogen and argon gas mixture.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ar+ e Ar + + e + e .
Ar+Ar + +Ar Ar 2 + +Ar ; Ar 2 + + e Ar+Ar * ,
Ar 2 + + e ( Ar + ) * +Ar+ e .
Ar * +N 2 Ar+N+N * ,
Ar + +N 2 Ar+N 2 + ; N 2 + +e N+N * .
N+e ( N + ) * +e+e.
N+N + +N N 2 + +N; N 2 + +e N+N * .

Metrics