Abstract

We demonstrate full flex-grid operation with Nyquist frequency division multiplexing. The technique supports high spectral efficiency, asynchronous operation of channels, variable channel loading with different modulation formats and dynamic bandwidth allocation. Data from different sources with different bit and symbol rates are encoded onto electrical Nyquist pulses with different electrical subcarrier frequencies, and then transmitted optically. We give details on the transceiver design with digital signal processing and investigate the implementation penalty as a function of several design parameters such as limited filter length and effective number of bits. Finally, experiments are performed for receivers with direct detection, intradyne and remote heterodyne reception.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
    [CrossRef] [PubMed]
  2. Y. Koizumi, K. Toyoda, M. Yoshida, M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [CrossRef] [PubMed]
  3. W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  4. T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43(2/3/4), 191–193 (1995).
    [CrossRef]
  5. G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [CrossRef]
  6. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
    [CrossRef]
  7. J. C. Cartledge, J. D. Downie, J. E. Hurley, A. S. Karar, Y. Jiang, K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” Opt. Express 19(26), B628–B635 (2011).
    [CrossRef] [PubMed]
  8. R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in Proc. Conf. Laser Electro-Optics (2012), paper CTh1H.2.
    [CrossRef]
  9. R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
    [CrossRef] [PubMed]
  10. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
    [CrossRef] [PubMed]
  11. J. Geyer, C. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Optical Fiber Communication Conference (2010), paper OWV5.
    [CrossRef]
  12. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (Prentice-Hall, 1989), Vol. 2.
  13. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
    [CrossRef]
  14. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
    [CrossRef]
  15. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  16. M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express 19(8), 7839–7846 (2011).
    [CrossRef] [PubMed]
  17. B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
    [CrossRef]
  18. R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
    [CrossRef]
  19. P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
    [CrossRef]

2014 (1)

2013 (1)

2012 (6)

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

Y. Koizumi, K. Toyoda, M. Yoshida, M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

R. Essiambre, G. Kramer, P. Winzer, G. Foschini, B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[CrossRef]

2008 (1)

1995 (1)

T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43(2/3/4), 191–193 (1995).
[CrossRef]

Altenhain, L.

Andrekson, P. A.

Baeuerle, B.

Bao, H.

Bäuerle, B.

Becker, J.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

Ben-Ezra, S.

Bimberg, D.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Bonk, R.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Cartledge, J. C.

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Dippon, T.

Downie, J. D.

Dreschmann, M.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

Ellermeyer, T.

Essiambre, R.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Foschini, G.

Freude, W.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Goebel, B.

Guetlein, J.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Hillerkuss, D.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

Huebner, M.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

Hurley, J. E.

Jiang, Y.

Johannisson, P.

Jordan, M.

Josten, A.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

Karar, A. S.

Karlsson, M.

Karnick, D.

Kleinow, P.

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

Koizumi, Y.

Koos, C.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Kourtessis, P.

Kramer, G.

Krimmel, H.-G.

Leuthold, J.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Lindenmann, N.

Ludwig, A.

Melikyan, A.

Meuer, C.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Meyer, J.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

Meyer, M.

Moeller, M.

Moeneclaey, M.

T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43(2/3/4), 191–193 (1995).
[CrossRef]

Nakazawa, M.

Nebendahl, B.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

Oehler, A.

Parmigiani, F.

Petropoulos, P.

Pfeiffer, T.

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Pollet, T.

T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43(2/3/4), 191–193 (1995).
[CrossRef]

Prat, J.

Resan, B.

Roberts, K.

Schindler, P.

Schindler, P. C.

Schmeckebier, H.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Schmogrow, R.

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

P. C. Schindler, R. Schmogrow, M. Dreschmann, J. Meyer, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, A. Ludwig, D. Karnick, D. Hillerkuss, J. Becker, C. Koos, W. Freude, J. Leuthold, “Colorless FDMA-PON with flexible bandwidth allocation and colorless, low-speed ONUs [invited],” J. Opt. Commun. Netw. 5(10), A204–A212 (2013).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[CrossRef]

Shieh, W.

Sjödin, M.

Spinnler, B.

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

Tang, Y.

Tomkos, I.

Toyoda, K.

Vallaitis, T.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

Van Bladel, M.

T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43(2/3/4), 191–193 (1995).
[CrossRef]

Weingarten, K.

Winter, M.

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

Winzer, P.

Wolf, S.

Wymeersch, H.

Yang, X.

Yoshida, M.

IEEE J. Sel. Top. Quantum Electron. (1)

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

IEEE Photon. J. (1)

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J. 3(6), 1039–1053 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(1), 61–63 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Corrections to: Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24(23), 2198 (2012).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43(2/3/4), 191–193 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (2)

Opt. Express (7)

J. C. Cartledge, J. D. Downie, J. E. Hurley, A. S. Karar, Y. Jiang, K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” Opt. Express 19(26), B628–B635 (2011).
[CrossRef] [PubMed]

R. Schmogrow, M. Meyer, P. C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling,” Opt. Express 22(1), 193–209 (2014).
[CrossRef] [PubMed]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[CrossRef] [PubMed]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[CrossRef] [PubMed]

Y. Koizumi, K. Toyoda, M. Yoshida, M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
[CrossRef] [PubMed]

W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[CrossRef] [PubMed]

M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express 19(8), 7839–7846 (2011).
[CrossRef] [PubMed]

Other (3)

J. Geyer, C. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Optical Fiber Communication Conference (2010), paper OWV5.
[CrossRef]

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (Prentice-Hall, 1989), Vol. 2.

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in Proc. Conf. Laser Electro-Optics (2012), paper CTh1H.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the NFDM link. A number of N Nyquist pulse transmitters (Tx) with electrical subcarrier (SC) frequencies f n = ω n / ( 2π ) define N channels of the NFDM signal. A complex mixer modulates each SC with complex data shaped by a filter with sinc-shaped impulse response hn(t). The electrical NFDM signal is formed by a superposition of all modulated SCs. An electro-optic (E/O) converter mixes the data v(t) onto an optical carrier. This can be done by either I/Q-modulation, see upper inset “QAM”, or by intensity modulation (bias vb), see bottom inset “IM”. After back-to-back transmission, an opto-electric (O/E) converter recovers the electrical signal v( t ) , either by homodyne reception with a local oscillator exp( j ω opt t ) , or by direct detection | | 2 = v v +v( t ) . After O/E conversion, the electrical signal un(t) is received by N homodyne receivers for the respective subcarriers. Matched filters with sinc-shaped impulse responses hn*(−t) = hn(t) avoid inter-channel interference (ICI).

Fig. 2
Fig. 2

Nyquist time domain digital signal processing (DSP). In contrast to Fig. 1 we choose ω 0 =0 . (a) Transmitters: Input data are up-sampled by a factor q through inserting q – 1 zeros in-between data samples. The signal is then convolved with a Nyquist sinc-shaped impulse response hn(t) and simultaneously mixed with the subcarrier ω n resulting in an impulse response h n , see Appendix. (b) Receivers: The input signal feeds matched FIR filters having impulse responses h n '* ( t ) corresponding to the ones of the Tx. After down-sampling and timing recovery [10] the data are recovered.

Fig. 3
Fig. 3

Nyquist frequency domain digital signal processing (DSP) for NFDM. (a) The Tx maps a block of mn complex TD data (here: ± 1) to the input of an mn-point FFT. Symmetrical insertion of M□mn zeroes (zero padding) corresponds to (M / mn)-fold oversampling. The mn-point FFT is shifted to the proper SC position inside the M-point array. The shifted spectra are added and input to an M-point IFFT. These TD output data blocks are then parallel-to-serial converted and transmitted. (b) After a serial-to-parallel conversion, the Rx M-point FFT transforms the compound TD signal blockwise to the frequency domain. The proper channel is selected by an M-point filter Hn(f), which selects at its output only the mn points corresponding to the chosen channel. Next a mn-point IFFT recovers the modulation coefficients. A clock recovery [9] synchronizes each mn-point IFFT with the M-point FFT.

Fig. 4
Fig. 4

Experimental setup to determine the implementation penalties of NFDM. An arbitrary waveform generator (AWG) drives an optical I/Q-modulator. NFDM data are encoded on an external cavity laser (ECL), the output of which is amplified by an erbium doped fiber amplifier (EDFA) and coherently received by an optical modulation analyzer (OMA).

Fig. 5
Fig. 5

Effect of penalties due to a limited filter length and DAC resolution as for the middle channel in a 5 channel transmission. (a) Linear inter-channel crosstalk for transmission of a 1.5 GBd 16QAM NFDM signal. The amount of crosstalk is specified by the error vector magnitude (EVM) for both simulations (black) and measurements (blue). As expected, an increase of the impulse response length L confines the spectrum more closely to the Nyquist band, and therefore reduces the observed crosstalk. We see an EVM implementation penalty of 1 percentage point when comparing simulations without noise to actual measurements. The insets show two constellation diagrams for two different impulse response lengths. (b) Influence of DAC resolution of the NFDM transmitter on the achievable EVM for NFDM channels generated with filters of different lengths. Signals are computed with double precision (64 bit) and then reduced to the specified resolution. In tendency, a higher resolution is required when increasing the filter’s response length. However, a DAC with 6 bit resolution suffices without compromising the signal quality. (b) left: Simulation. (b) right: Measurement.

Fig. 6
Fig. 6

Flex-grid scenario of five NFDM channels with varying bandwidth for transporting 16QAM signals. (a) Lower graph: Measured compound spectrum with color-coded channel spectra. Upper row: Measured back-to-back constellation diagrams and bit error ratio (BER) with identical color coding as the channel spectra. The order R of the filter’s impulse response is set to R = 128 (R + 1 = 129 taps). The finite filter order causes channel spectra to overlap, introducing ICI, thus channels have varying performance linked to their spectral width. The smallest channels suffer strongest. (b) Simulated bit error ratio (BER) for the five channels for QPSK and 16QAM formats as a function of the SNR per bit [15]. As expected, the different color-coded curves virtually coincide. Implementation penalties mainly at the receiver cause the performance difference between experiment and simulation.

Fig. 7
Fig. 7

Experimental setup and spectra for an intensity modulation direct detection (IM/DD) system with NFDM signals. (a) Experimental setup. Pre-computed data from a standard PC are fed to an FPGA followed by a DAC. An electrical low-pass filter removes alias spectra before the amplified electrical signal is fed into an optical Mach-Zehnder modulator (MZM) which is biased at its quadrature point for intensity modulating light from an ECL. The variable optical attenuator (VOA) and the EDFA are used to change the OSNR, which then is measured by the optical spectrum analyzer (OSA). The EDFA output is kept at a constant power level, optically filtered, and then received by a photo-detector (PD). Finally, a real-time oscilloscope records the electrical waveforms after photo-detection. (b) For visualization, we measure the signal with a coherent receiver and depict the resulting electrical aggregate NFDM signal baseband spectrum. The signal comprises three independent channels modulated with QPSK. The channels’ symbol rates are 3.125 GBd each. For real modulated signals the spectra must obey a Hermitian symmetry, i. e., spectra at negative frequencies (here: ch0*, 1*, 2*) are the complex conjugate of spectra at positive frequencies (ch0, 1, 2). The performance in later measurements is assessed by direct detection, Fig. 8.

Fig. 8
Fig. 8

Experimental results for intensity modulation and direct detection (IM/DD). Measured BER (squares) and equivalent BER derived from measured EVM (lines) as a function of OSNR (reference bandwidth 0.1 nm) and SNR per bit derived from the complete spectrum. All three channels are either modulated with (a) QPSK or (b) 16QAM. All 3 NFDM channels are directly detected with a single PD according to Fig. 7(a). A degradation of the signal quality can be seen when going from ch0 to ch2. This is due to the spectral roll-off also seen in Fig. 7(b). The OSNR is measured for the complete spectrum and we subtracted the power of the optical carrier for comparison. The spectral roll-off causes the channels to have different SNR. For comparison, the mean BER is given in magenta.

Fig. 9
Fig. 9

Experimental setup and spectra for coherently received NFDM signals. (a) Experimental setup. Two synchronized FPGAs store pre-computed NFDM wave-forms. Together with the DACs they again act as an AWG. The amplified outputs drive an optical I/Q-modulator that encodes the waveform onto an ECL. As in the previous setup the OSNR measured by the OSA can be adjusted with a VOA and EDFA pair. The OMA coherently receives and decodes the signals. (b) Measured NFDM signal spectrum comprising 5 independently modulated channels. The modulation format is either QPSK or 16QAM. The spectral roll-off is due to the combined frequency response of Tx and Rx and can be compensated for by means of a pre-emphasis or equalization. Here it will be equalized in the receiver.

Fig. 10
Fig. 10

Intradyne reception of NFDM signals. Measured BER (squares) and BER calculated from measured EVM (lines) as a function of OSNR (reference bandwidth 0.1 nm) and SNR per bit of the complete spectrum. All 5 channels are either modulated with (a) QPSK or (b) 16QAM. The center channel (ch2) performs best as it has the highest SNR, see Fig. 9(b). All measured BER coincide with the equivalent BER obtained from EVM measurements. The OSNR was measured for the complete spectrum, but is not the same for each channel due to the spectral roll-off. The mean BER is depicted as a magenta-colored line for comparison.

Fig. 11
Fig. 11

Experimental setup and results for remote heterodyne detection of QPSK modulated NFDM signals. (a) Experimental setup. Two optical carriers are generated from an ECL using a MZM driven by an 18.75 GHz tone. The carriers are separated with a Finisar WaveShaper and one of the carriers is encoded with NFDM signals whereas the other serves as local oscillator for remote heterodyne detection. The inset shows a schematic of the signal spectrum. The input power Pin to the Rx is adjusted and a semiconductor optical amplifier (SOA) boosts the signal that is detected. A single NFDM channel is electrically down-converted and sampled with a real-time oscilloscope. (b) Measured BER (squares) and equivalent BER from EVM (lines) for various levels of Rx input power Pin. At low input powers the signal quality is degraded by thermal noise added by the broad-band electrical amplifier after the PD. For high input powers non-linear effects in the SOA limit the signal performance. The smallest BER is observed at input powers Pin = 4 dBm.

Fig. 12
Fig. 12

Visualization of the equivalency of v(t)=( u(t)h(t) )exp( j ω n t ) and v'(t)=u(t)( h(t)exp( j ω n t ) ) in the case of sampled signals. When a signal is sampled with the sampling rate F s , the baseband spectrum repeats at integer multiples of F s . (a) For the case of v(t)=( u(t)h(t) )exp( j ω n t ) the signal is first filtered at baseband, resulting in the black partial spectrum. This is then shifted by a mixing process to the target frequency that is an integer multiple of F s . (b) In the case of v'(t)=u(t)( h(t)exp( j ω n t ) ) , the filter is first shifted to the target frequency at an integer multiple of F s . The filter is then applied to the sampled signal and thus cuts out the (black) partial spectrum centered at the target frequency. The approaches (a) and (b) both yield the same result: The signal’s baseband spectrum centered at the target frequency ν F s (here at 2 F s ).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

h(t)=sinc( t T s )= sin( πt / T s ) πt / T s .
v(t)= n=0 N1 v n (t)= n=0 N1 u n (t)h(t)exp( j ω n t ).
E(t)=v(t)exp( j ω opt t ).
E(t)= v b +v(t) exp( j ω opt t ).
L= R T S /q .
SNR=OSNR 25GHz pB , SNR bit =OSNR 25GHz p R b .
v(t)=( u(t)h(t) )exp( j ω n t ),
v'(t)=u(t)( h(t)exp( j ω n t ) ).
exp( j ω n t ) + u(τ)h(tτ)dτ = ? exp( j ω n t ) + u(τ)h(tτ)exp( j ω n τ )dτ .
v ( f )= + u ( f 1 ) h ( f 1 )δ( f f 1 f n )d f 1 = u ( f f n ) h ( f f n ),
v ( f )= u ( f ) + h ( f 1 )δ( f f 1 f n )d f 1 = u ( f ) h ( f f n ).
u s (t)=u(t) T s ν= + δ ( tν T s ), u s (f)= + u ( f 1 ) ν= + δ ( f f 1 ν F s )d f 1 = ν= + u ( fν F s ).
v s (f)= ν= + u ( fν F s f n ) h ( f f n )} = ν=0 u ( f f n ) h ( f f n ).
v s (f)= ν= + u ( fν F s ) h ( f f n ) = ν=n u ( f f n ) h ( f f n ).

Metrics