Abstract

The future information infrastructure will be affected by limited bandwidth of optical networks, high energy consumption, heterogeneity of network segments, and security issues. As a solution to all problems, we advocate the use of both electrical basis functions (orthogonal prolate spheroidal basis functions) and optical basis functions, implemented as FBGs with orthogonal impulse response in addition to spatial modes. We design the Bragg gratings with orthogonal impulse responses by means of discrete layer peeling algorithm. The target impulse responses belong to the class of discrete prolate spheroidal sequences, which are mutually orthogonal regardless of the sequence order, while occupying the fixed bandwidth. We then design the corresponding encoders and decoders suitable for all-optical encryption, optical CDMA, optical steganography, and orthogonal-division multiplexing (ODM). Finally, we propose the spectral multiplexing-ODM-spatial multiplexing scheme enabling beyond 10 Pb/s serial optical transport networks.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cvijetic, and I. B. Djordjevic, Advanced optical communications and networks (Artech House, 2013).
  2. I. B. Djordjevic, “On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport,” J. Lightwave Technol. 31(16), 2969–2975 (2013).
    [CrossRef]
  3. I. B. Djordjevic, Quantum informationpProcessing and quantum error correction: an engineering approach (Elsevier/Academic Press, 2012).
  4. V. Annovazzi-Lodi, S. Donati, A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32(6), 953–959 (1996).
    [CrossRef]
  5. P. Torres, L. C. G. Valente, M. C. R. Carvalho, “Security system for optical communication signals with fiber Bragg gratings,” IEEE Trans. Microw. Theory Tech. 50(1), 13–16 (2002).
    [CrossRef]
  6. J. M. Castro, I. B. Djordjevic, D. Geraghty, “Novel super-structured Bragg gratings for optical encryption,” J. Lightwave Technol. 24(4), 1875–1885 (2006).
    [CrossRef]
  7. D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: the discrete case,” Bell Syst. Tech. J. 57(5), 1371–1430 (1978).
    [CrossRef]
  8. J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [CrossRef]
  9. Y. Ouyang, Y. Sheng, M. Bernier, G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).
    [CrossRef]
  10. B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
    [CrossRef] [PubMed]
  11. P. Pintus, F. Di Pasquale, J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
    [CrossRef] [PubMed]
  12. M. P. Fok, P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009).
    [CrossRef] [PubMed]
  13. P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, “Physical layer security in fiber-optic networks using optical signal processing,” in Proc. SPIE-OSA-IEEE Asia Communications and Photonics 7632, 6321M–1− 76321M–10 (2009), Shanghai, China.
    [CrossRef]
  14. A. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennett, W. J. Lennon, “High-performance optical CDMA system based on 2-D optical orthogonal codes,” J. Lightwave Technol. 22(11), 2409–2419 (2004).
    [CrossRef]
  15. V V. J. Hernandez, W. Cong, J. Hu, C. Yang, N. K. Fontaine, R. P. Scott, Z. Ding, B. H. Kolner, J. P. Heritage, S. J. B. Yoo, “A 320-Gb/s capacity (32-user× 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightwave Technol. 25(1), 79–86 (2007).
    [CrossRef]
  16. P. L. L. Bertarini, A. L. Sanches, B.-H. V. Borges, “Optimal code set selection and security issues in spectral phase-encoded time spreading (SPECTS) OCDMA systems,” J. Lightwave Technol. 30(12), 1882–1890 (2012).
    [CrossRef]
  17. T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 23(2), 655–670 (2005).
    [CrossRef]
  18. I. B. Djordjevic, A. Jovanovic, M. Cvijetic, Z. H. Peric, “Multidimensional vector quantization-based signal constellation design enabling beyond 1 Pb/s serial optical transport networks,” IEEE Photon. J. 5(4), 7901312 (2013).
    [CrossRef]

2013

2012

2009

2007

2006

2005

2004

2002

P. Torres, L. C. G. Valente, M. C. R. Carvalho, “Security system for optical communication signals with fiber Bragg gratings,” IEEE Trans. Microw. Theory Tech. 50(1), 13–16 (2002).
[CrossRef]

2001

J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

1996

V. Annovazzi-Lodi, S. Donati, A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32(6), 953–959 (1996).
[CrossRef]

1978

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: the discrete case,” Bell Syst. Tech. J. 57(5), 1371–1430 (1978).
[CrossRef]

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Donati, A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32(6), 953–959 (1996).
[CrossRef]

Bennett, C. V.

Bernier, M.

Bertarini, P. L. L.

Borges, B.-H. V.

Bowers, J. E.

Carvalho, M. C. R.

P. Torres, L. C. G. Valente, M. C. R. Carvalho, “Security system for optical communication signals with fiber Bragg gratings,” IEEE Trans. Microw. Theory Tech. 50(1), 13–16 (2002).
[CrossRef]

Castro, J. M.

Cong, W.

Cvijetic, M.

I. B. Djordjevic, A. Jovanovic, M. Cvijetic, Z. H. Peric, “Multidimensional vector quantization-based signal constellation design enabling beyond 1 Pb/s serial optical transport networks,” IEEE Photon. J. 5(4), 7901312 (2013).
[CrossRef]

Di Pasquale, F.

Ding, Z.

Djordjevic, I. B.

Donati, S.

V. Annovazzi-Lodi, S. Donati, A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32(6), 953–959 (1996).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Fok, M. P.

Fontaine, N. K.

Gagliardi, R. M.

Geraghty, D.

Heritage, J. P.

Hernandez, V V. J.

Hernandez, V. J.

Hu, J.

Jovanovic, A.

I. B. Djordjevic, A. Jovanovic, M. Cvijetic, Z. H. Peric, “Multidimensional vector quantization-based signal constellation design enabling beyond 1 Pb/s serial optical transport networks,” IEEE Photon. J. 5(4), 7901312 (2013).
[CrossRef]

Kanoff, D. R.

Kolner, B. H.

Lennon, W. J.

Mendez, A.

Ouyang, Y.

Paul-Hus, G.

Peric, Z. H.

I. B. Djordjevic, A. Jovanovic, M. Cvijetic, Z. H. Peric, “Multidimensional vector quantization-based signal constellation design enabling beyond 1 Pb/s serial optical transport networks,” IEEE Photon. J. 5(4), 7901312 (2013).
[CrossRef]

Pintus, P.

Prucnal, P. R.

Sanches, A. L.

Scire, A.

V. Annovazzi-Lodi, S. Donati, A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32(6), 953–959 (1996).
[CrossRef]

Scott, R. P.

Shake, T. H.

Shastri, B. J.

Sheng, Y.

Skaar, J.

J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Slepian, D.

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: the discrete case,” Bell Syst. Tech. J. 57(5), 1371–1430 (1978).
[CrossRef]

Tian, Y.

Torres, P.

P. Torres, L. C. G. Valente, M. C. R. Carvalho, “Security system for optical communication signals with fiber Bragg gratings,” IEEE Trans. Microw. Theory Tech. 50(1), 13–16 (2002).
[CrossRef]

Valente, L. C. G.

P. Torres, L. C. G. Valente, M. C. R. Carvalho, “Security system for optical communication signals with fiber Bragg gratings,” IEEE Trans. Microw. Theory Tech. 50(1), 13–16 (2002).
[CrossRef]

Wang, L.

J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Wang, Z.

Wu, B.

Yang, C.

Yoo, S. J. B.

Bell Syst. Tech. J.

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: the discrete case,” Bell Syst. Tech. J. 57(5), 1371–1430 (1978).
[CrossRef]

IEEE J. Quantum Electron.

J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

V. Annovazzi-Lodi, S. Donati, A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32(6), 953–959 (1996).
[CrossRef]

IEEE Photon. J.

I. B. Djordjevic, A. Jovanovic, M. Cvijetic, Z. H. Peric, “Multidimensional vector quantization-based signal constellation design enabling beyond 1 Pb/s serial optical transport networks,” IEEE Photon. J. 5(4), 7901312 (2013).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. Torres, L. C. G. Valente, M. C. R. Carvalho, “Security system for optical communication signals with fiber Bragg gratings,” IEEE Trans. Microw. Theory Tech. 50(1), 13–16 (2002).
[CrossRef]

J. Lightwave Technol.

J. M. Castro, I. B. Djordjevic, D. Geraghty, “Novel super-structured Bragg gratings for optical encryption,” J. Lightwave Technol. 24(4), 1875–1885 (2006).
[CrossRef]

I. B. Djordjevic, “On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport,” J. Lightwave Technol. 31(16), 2969–2975 (2013).
[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).
[CrossRef]

A. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennett, W. J. Lennon, “High-performance optical CDMA system based on 2-D optical orthogonal codes,” J. Lightwave Technol. 22(11), 2409–2419 (2004).
[CrossRef]

V V. J. Hernandez, W. Cong, J. Hu, C. Yang, N. K. Fontaine, R. P. Scott, Z. Ding, B. H. Kolner, J. P. Heritage, S. J. B. Yoo, “A 320-Gb/s capacity (32-user× 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightwave Technol. 25(1), 79–86 (2007).
[CrossRef]

P. L. L. Bertarini, A. L. Sanches, B.-H. V. Borges, “Optimal code set selection and security issues in spectral phase-encoded time spreading (SPECTS) OCDMA systems,” J. Lightwave Technol. 30(12), 1882–1890 (2012).
[CrossRef]

T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 23(2), 655–670 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, “Physical layer security in fiber-optic networks using optical signal processing,” in Proc. SPIE-OSA-IEEE Asia Communications and Photonics 7632, 6321M–1− 76321M–10 (2009), Shanghai, China.
[CrossRef]

I. B. Djordjevic, Quantum informationpProcessing and quantum error correction: an engineering approach (Elsevier/Academic Press, 2012).

M. Cvijetic, and I. B. Djordjevic, Advanced optical communications and networks (Artech House, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Illustrating the DPSS-FBG design. The ρj is the complex reflection coefficient of the j-th section and Δ denotes the section length.

Fig. 2
Fig. 2

Flow-chart illustrating the discrete layer peeling algorithm.

Fig. 3
Fig. 3

Flow chart illustrating the applied transfer matrix method.

Fig. 4
Fig. 4

Spectra of the target transfer functions and those obtained by the layer peeling algorithm for: (a) the 10-th order of DPSS and (b) the 100-th order DPSS.

Fig. 5
Fig. 5

Impulse responses of the target transfer functions and result obtained by the layer peeling algorithm for the 10-th order of DPSS.

Fig. 6
Fig. 6

Cardinality of the actual Bragg gratings’ designs for the target 150 DPSS set of FBGs found for 10-Gb/s rate as a function of the normalized cross-correlation (with different input pulsewidths).

Fig. 7
Fig. 7

Cardinality of the theoretical DPS sequences corresponding to the target of 150 for 10-Gb/s rate as a function of the normalized cross-correlation (with different input pulsewidths).

Fig. 8
Fig. 8

Encoder/decoder configurations for DPSS-FBGs’ based all-optical encryption: (a) encoder configuration and (b) decoder configuration.

Fig. 9
Fig. 9

Illustration of encoding and decoding in proposed all-optical encryption scheme: (a) the outputs of encoder at different time intervals, and (b) the output of matched DPSS-FBG.

Fig. 10
Fig. 10

Improving the security of proposed scheme by using masking sequences with data rates different from the transmitted sequence.

Fig. 11
Fig. 11

BER performance of the proposed encryption system with several masks of rates different from transmitted sequence data rate (10 Gb/s). The laser pulse width is set to 1ps.

Fig. 12
Fig. 12

BER performance of stealth channels against that of the public channel. The laser pulse width is set to 1 ps and data rate to 10 Gb/s.

Fig. 13
Fig. 13

BER performance of proposed OCDMA system for different number of users. The laser pulse width is set to 1 ps and data rate to 10 Gb/s.

Fig. 14
Fig. 14

The principles of orthogonal-division multiplexing: (a) transmitter configuration and (b) receiver configuration. E/O modulator: electro-optical modulator (MZ modulator, phase modulator, or I/Q modulator).

Fig. 15
Fig. 15

Conceptual scheme of spectral-ODM-spatial processing enabling up to 10 Pb/s serial optical transport networking. ODM: orthogonal-division multiplexing.

Fig. 16
Fig. 16

(a) Block diagram of a transmitter for the software-defined coded multiband optical-OFDM with spectral-ODM-spatial multiplexing. (b) Details of the LDPC-coded 2M-dimensional modulator. (c) Details of the receiver. N1 denotes the number of bands (supperchannels) within the spectral band group; N2 denotes the number of spectral band groups; N3 denotes the number of ODM inputs; N4 denotes the number of spatial modes; and 2M denotes the number of electrical basis functions.

Tables (2)

Tables Icon

Table 1 Parameters of DPSS-FBGs Corresponding to Different Data Rates

Tables Icon

Table 2 Parameters of DPSS-FBGs to be Used in Proposed ODM Scheme (for Symbol Rate of 31.25 Gb/s and LDPC Code Rate of 0.8)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i=0 N1 sin2π( ni ) π( ni ) u i ( j ) ( N,W ) = μ j ( N,W ) u n ( j ) ( N,W );n=0,±1,±2,
T 11 ( m ) ( λ k )=cosh( q m 2 δ 2 ( λ k ) L J )j δ( λ k ) q m 2 δ 2 ( λ k ) sinh( q m 2 δ 2 ( λ k ) L J ) T 12 ( m ) ( λ k )=j q m q m 2 δ 2 ( λ k ) sinh( q m 2 δ 2 ( λ k ) L J ), T 22 ( m ) = T 11 ( m ) , T 21 ( m ) = T 12 ( m ) .

Metrics