Abstract

Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jaeger, “The ’echo state’ approach to analysing and training recurrent neural networks - with an Erratum note,” GMD Report 148: German National Research Centre for Information Technology (2001).
  2. H. Jaeger, H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science 304(5667), 78–80 (2004).
    [CrossRef] [PubMed]
  3. W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002).
    [CrossRef] [PubMed]
  4. M. Lukoševičius, H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev. 3127–149 (2009).
    [CrossRef]
  5. L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
    [CrossRef] [PubMed]
  6. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
    [CrossRef] [PubMed]
  7. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).
    [CrossRef] [PubMed]
  8. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012).
    [CrossRef] [PubMed]
  9. D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
    [CrossRef]
  10. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, “Toward optical signal processing using Photonic Reservoir Computing,” Opt. Express 16, 11182–11192 (2008).
    [CrossRef] [PubMed]
  11. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
    [CrossRef]
  12. C. Mesaritakis, V. Papataxiarhis, D. Syvridis, “Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system,” J. Opt. Soc. Am. B 30, 3048–3055 (2013).
    [CrossRef]
  13. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).
  14. D. Massoubre, J.L. Oudar, J. Fatome, S. Pitois, G. Millot, J. Decobert, J. Landreau, “All-optical extinction ratio enhancement of a 160 Ghz pulse train by a saturable absorber vertical microcavity,” Opt. Lett. 31537–539 (2006).
    [CrossRef] [PubMed]
  15. L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
    [CrossRef]
  16. D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
    [CrossRef]
  17. A. Rodan, P. Tiňo, “Minimum complexity echo state network,” IEEE T. Neural Netw. 22131–144 (2011).
    [CrossRef]
  18. A. Rodan, P. Tiňo, “Simple deterministically constructed recurrent neural networks,” in Intelligent Data Engineering and Automated Learning (IDEAL, 2010), pp. 267–274.
  19. H. Jaeger, “Short-term memory in echo states networks,” GMD Report 152, German National Research Center for Information Technology (2002).
  20. J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
    [CrossRef] [PubMed]
  21. http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html
  22. D. Verstraeten, B. Schrauwen, D. Stroobandt, “Isolated word recognition using a liquid state machine,” in Proceedings of the 13th European Symposium on Artificial Neural Networks(ESANN), 435–440 (2005).
  23. Texas Instruments-Developed 46-Word Speaker-Dependent Isolated Word Corpus (TI46), September 1991, NIST Speech Disc 7-1.1 (1 disc), (1991).
  24. R. Lyon, “A computational model of filtering, detection, and compression in the cochlea,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1282–1285 (1982).

2014 (1)

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

2013 (2)

D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[CrossRef]

C. Mesaritakis, V. Papataxiarhis, D. Syvridis, “Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system,” J. Opt. Soc. Am. B 30, 3048–3055 (2013).
[CrossRef]

2012 (5)

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
[CrossRef] [PubMed]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).
[CrossRef] [PubMed]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Rodan, P. Tiňo, “Minimum complexity echo state network,” IEEE T. Neural Netw. 22131–144 (2011).
[CrossRef]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

2009 (1)

M. Lukoševičius, H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev. 3127–149 (2009).
[CrossRef]

2008 (1)

2006 (2)

D. Massoubre, J.L. Oudar, J. Fatome, S. Pitois, G. Millot, J. Decobert, J. Landreau, “All-optical extinction ratio enhancement of a 160 Ghz pulse train by a saturable absorber vertical microcavity,” Opt. Lett. 31537–539 (2006).
[CrossRef] [PubMed]

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

2004 (1)

H. Jaeger, H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science 304(5667), 78–80 (2004).
[CrossRef] [PubMed]

2002 (1)

W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002).
[CrossRef] [PubMed]

Appeltant, L.

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).
[CrossRef] [PubMed]

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Baets, R.

BIenstman, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, “Toward optical signal processing using Photonic Reservoir Computing,” Opt. Express 16, 11182–11192 (2008).
[CrossRef] [PubMed]

Bramerie, L.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Brunner, D.

Dambre, J.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
[CrossRef] [PubMed]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Danckaert, J.

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Decobert, J.

Decobert, L.

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Dierckx, W.

Dion, J.

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Duport, F.

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012).
[CrossRef] [PubMed]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

Fatome, J.

Fiers, M.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

Fischer, I.

D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[CrossRef]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).
[CrossRef] [PubMed]

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Gay, M.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Gutierrez, J. M.

Haas, H.

H. Jaeger, H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science 304(5667), 78–80 (2004).
[CrossRef] [PubMed]

Haelterman, M.

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012).
[CrossRef] [PubMed]

Harmand, J-C

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Jaeger, H.

M. Lukoševičius, H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev. 3127–149 (2009).
[CrossRef]

H. Jaeger, H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science 304(5667), 78–80 (2004).
[CrossRef] [PubMed]

H. Jaeger, “Short-term memory in echo states networks,” GMD Report 152, German National Research Center for Information Technology (2002).

H. Jaeger, “The ’echo state’ approach to analysing and training recurrent neural networks - with an Erratum note,” GMD Report 148: German National Research Centre for Information Technology (2001).

Joindot, M.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Landreau, J.

D. Massoubre, J.L. Oudar, J. Fatome, S. Pitois, G. Millot, J. Decobert, J. Landreau, “All-optical extinction ratio enhancement of a 160 Ghz pulse train by a saturable absorber vertical microcavity,” Opt. Lett. 31537–539 (2006).
[CrossRef] [PubMed]

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Larger, L.

Lobo, S.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Lukoševicius, M.

M. Lukoševičius, H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev. 3127–149 (2009).
[CrossRef]

Lyon, R.

R. Lyon, “A computational model of filtering, detection, and compression in the cochlea,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1282–1285 (1982).

Maass, W.

W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002).
[CrossRef] [PubMed]

Markram, H.

W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002).
[CrossRef] [PubMed]

Massar, S.

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
[CrossRef] [PubMed]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012).
[CrossRef] [PubMed]

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Massoubre, D.

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

D. Massoubre, J.L. Oudar, J. Fatome, S. Pitois, G. Millot, J. Decobert, J. Landreau, “All-optical extinction ratio enhancement of a 160 Ghz pulse train by a saturable absorber vertical microcavity,” Opt. Lett. 31537–539 (2006).
[CrossRef] [PubMed]

Mechet, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

Mesaritakis, C.

Millot, G.

Mirasso, C. R.

Mirasso, C.R.

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Morthier, G.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

Natschläger, T.

W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002).
[CrossRef] [PubMed]

Nguyen, H-T.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

O’Hare, A.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Oudar, J.L.

Oudar, J-L.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Papataxiarhis, V.

Paquot, Y.

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

Pesquera, L.

Pitois, S.

Rodan, A.

A. Rodan, P. Tiňo, “Minimum complexity echo state network,” IEEE T. Neural Netw. 22131–144 (2011).
[CrossRef]

A. Rodan, P. Tiňo, “Simple deterministically constructed recurrent neural networks,” in Intelligent Data Engineering and Automated Learning (IDEAL, 2010), pp. 267–274.

Schneider, B.

Schrauwen, B.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
[CrossRef] [PubMed]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, “Toward optical signal processing using Photonic Reservoir Computing,” Opt. Express 16, 11182–11192 (2008).
[CrossRef] [PubMed]

D. Verstraeten, B. Schrauwen, D. Stroobandt, “Isolated word recognition using a liquid state machine,” in Proceedings of the 13th European Symposium on Artificial Neural Networks(ESANN), 435–440 (2005).

Shen, A.

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Simon, J-C

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Smerieri, A.

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795 (2012).
[CrossRef] [PubMed]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

Soriano, M. C.

Soriano, M.C.

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Stroobandt, D.

D. Verstraeten, B. Schrauwen, D. Stroobandt, “Isolated word recognition using a liquid state machine,” in Proceedings of the 13th European Symposium on Artificial Neural Networks(ESANN), 435–440 (2005).

Syvridis, D.

Tino, P.

A. Rodan, P. Tiňo, “Minimum complexity echo state network,” IEEE T. Neural Netw. 22131–144 (2011).
[CrossRef]

A. Rodan, P. Tiňo, “Simple deterministically constructed recurrent neural networks,” in Intelligent Data Engineering and Automated Learning (IDEAL, 2010), pp. 267–274.

Trung Le, Q.

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

Van Campenhout, J.

Van der Sande, G.

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Van Vaerenbergh, T.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

Vandoorne, K.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, “Toward optical signal processing using Photonic Reservoir Computing,” Opt. Express 16, 11182–11192 (2008).
[CrossRef] [PubMed]

Verstraeten, D.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
[CrossRef] [PubMed]

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, “Toward optical signal processing using Photonic Reservoir Computing,” Opt. Express 16, 11182–11192 (2008).
[CrossRef] [PubMed]

D. Verstraeten, B. Schrauwen, D. Stroobandt, “Isolated word recognition using a liquid state machine,” in Proceedings of the 13th European Symposium on Artificial Neural Networks(ESANN), 435–440 (2005).

Appl. Phys. Lett. (1)

D. Massoubre, J-L. Oudar, J. Dion, J-C Harmand, A. Shen, J. Landreau, L. Decobert, “Scaling of the saturation energy in microcavity saturable absorber devices,” Appl. Phys. Lett. 88153513 (2006).
[CrossRef]

Comput. Sci. Rev. (1)

M. Lukoševičius, H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev. 3127–149 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Bramerie, Q. Trung Le, M. Gay, A. O’Hare, S. Lobo, M. Joindot, J-C Simon, H-T. Nguyen, J-L. Oudar, “All-optical 2R regeneration with a vertical microcavity-based saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 18870–883 (2012).
[CrossRef]

IEEE T. Neural Netw. (2)

K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE T. Neural Netw. 221469–1481 (2011).
[CrossRef]

A. Rodan, P. Tiňo, “Minimum complexity echo state network,” IEEE T. Neural Netw. 22131–144 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011).
[CrossRef] [PubMed]

Nat. Commun. (2)

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. BIenstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 4, 3541 (2014).

D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013).
[CrossRef]

Neural Comput. (1)

W. Maass, T. Natschläger, H. Markram, “Real-time computing without stable states: a new framework for neural computations based on perturbations,” Neural Comput. 14(11), 2531–2560 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Sci. Rep. (2)

J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, “Information processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).
[CrossRef] [PubMed]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 468 (2012).
[CrossRef] [PubMed]

Science (1)

H. Jaeger, H. Haas, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science 304(5667), 78–80 (2004).
[CrossRef] [PubMed]

Other (7)

H. Jaeger, “The ’echo state’ approach to analysing and training recurrent neural networks - with an Erratum note,” GMD Report 148: German National Research Centre for Information Technology (2001).

A. Rodan, P. Tiňo, “Simple deterministically constructed recurrent neural networks,” in Intelligent Data Engineering and Automated Learning (IDEAL, 2010), pp. 267–274.

H. Jaeger, “Short-term memory in echo states networks,” GMD Report 152, German National Research Center for Information Technology (2002).

http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html

D. Verstraeten, B. Schrauwen, D. Stroobandt, “Isolated word recognition using a liquid state machine,” in Proceedings of the 13th European Symposium on Artificial Neural Networks(ESANN), 435–440 (2005).

Texas Instruments-Developed 46-Word Speaker-Dependent Isolated Word Corpus (TI46), September 1991, NIST Speech Disc 7-1.1 (1 disc), (1991).

R. Lyon, “A computational model of filtering, detection, and compression in the cochlea,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1282–1285 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics