Abstract

This study theoretically investigates the wavelength-dependent longitudinal polarizability of a gold nanorod (GNR) irradiated by a polarized laser beam. The resultant optical torque in terms of the Maxwell stress tensor was analyzed quantitatively using the multiple multipole method. Our results indicate that the real part of the longitudinal polarizability of GNR can be either positive or negative, leading to the parallel or perpendicular modes, respectively. For the parallel and perpendicular modes, the long axis of GNR is rotated to align parallel and perpendicular, respectively, to the polarization direction of the illuminating light. The turning point between these two modes, depending on the aspect ratio (AR) and the size of GNR, nearly coincides with the longitudinal surface plasmon resonance (LSPR). The perpendicular mode ranges from the transverse SPR to LSPR, and the range of the parallel mode is broadband from LSPR to the near infrared regime. Owing to that a larger optical torque and less plasmonic heating are of concern, an efficiency of optical torque is defined to evaluate the performance of different wavelengths. Analysis results indicate that lasers with wavelength in the perpendicular mode are applicable to rotate and align a GNR of a higher AR. For example, the laser of 785 nm (the perpendicular mode) is superior to that of 1064 nm (the parallel mode, off-resonant from LSPR of 955 nm) for rotating a GNR of AR = 4 and radius 20 nm with an orientation of 45° with respect to the laser polarization.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bonin, B. Kourmanov, T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002).
    [CrossRef] [PubMed]
  2. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
    [CrossRef] [PubMed]
  3. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [CrossRef] [PubMed]
  4. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [CrossRef]
  5. Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
    [CrossRef] [PubMed]
  6. P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [CrossRef] [PubMed]
  7. E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
    [CrossRef] [PubMed]
  8. M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
    [CrossRef]
  9. A. S. Shalin, S. V. Sukhov, “Optical forces in plasmonic nanoantennas,” Quantum Electron. 42(4), 355–360 (2012).
    [CrossRef]
  10. B. J. Roxworthy, K. C. Toussaint., “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20(9), 9591–9603 (2012).
    [CrossRef] [PubMed]
  11. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
    [CrossRef] [PubMed]
  12. F. J. G. de Abajo, “Electromagnetic forces and torques in nanoparticles irradiated by plane waves,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 3–9 (2004).
    [CrossRef]
  13. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [CrossRef] [PubMed]
  14. L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
    [CrossRef] [PubMed]
  15. J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
    [CrossRef] [PubMed]
  16. H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012).
    [CrossRef] [PubMed]
  17. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
    [CrossRef] [PubMed]
  18. P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
    [CrossRef] [PubMed]
  19. L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
    [CrossRef] [PubMed]
  20. J. Trojek, L. Chvátal, P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29(7), 1224–1236 (2012).
    [CrossRef] [PubMed]
  21. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [CrossRef] [PubMed]
  22. Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
    [CrossRef] [PubMed]
  23. Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
    [CrossRef] [PubMed]
  24. Z. Yan, N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
    [CrossRef]
  25. Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
    [CrossRef] [PubMed]
  26. W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
    [CrossRef] [PubMed]
  27. W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
    [CrossRef] [PubMed]
  28. J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012).
    [CrossRef]
  29. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  30. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech. House, 1991).
  31. J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013).
    [CrossRef] [PubMed]
  32. J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
    [CrossRef] [PubMed]
  33. A. Y. Bekshaev, K. Y. Bliokh, F. Nori, “Mie scattering and optical forces from evanescent fields: A complex-angle approach,” Opt. Express 21(6), 7082–7095 (2013).
    [CrossRef] [PubMed]
  34. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]

2014 (1)

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

2013 (7)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[CrossRef] [PubMed]

Z. Yan, N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[CrossRef]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013).
[CrossRef] [PubMed]

A. Y. Bekshaev, K. Y. Bliokh, F. Nori, “Mie scattering and optical forces from evanescent fields: A complex-angle approach,” Opt. Express 21(6), 7082–7095 (2013).
[CrossRef] [PubMed]

2012 (11)

J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
[CrossRef] [PubMed]

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012).
[CrossRef]

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

J. Trojek, L. Chvátal, P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29(7), 1224–1236 (2012).
[CrossRef] [PubMed]

H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012).
[CrossRef] [PubMed]

A. S. Shalin, S. V. Sukhov, “Optical forces in plasmonic nanoantennas,” Quantum Electron. 42(4), 355–360 (2012).
[CrossRef]

B. J. Roxworthy, K. C. Toussaint., “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20(9), 9591–9603 (2012).
[CrossRef] [PubMed]

2011 (3)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

2010 (2)

M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[CrossRef]

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

2008 (2)

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

2004 (1)

F. J. G. de Abajo, “Electromagnetic forces and torques in nanoparticles irradiated by plane waves,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 3–9 (2004).
[CrossRef]

2002 (2)

K. Bonin, B. Kourmanov, T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Amendola, V.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Ba, H.

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

Bekshaev, A. Y.

Bendix, P. M.

H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012).
[CrossRef] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Bliokh, K. Y.

Bonin, K.

Borghese, F.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Cacciola, A.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Cavallaro, E.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Chen, B.-R.

J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chvátal, L.

Compagnini, G.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

de Abajo, F. J. G.

F. J. G. de Abajo, “Electromagnetic forces and torques in nanoparticles irradiated by plane waves,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 3–9 (2004).
[CrossRef]

Denti, P.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Dholakia, K.

M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[CrossRef]

Do, J.

J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[CrossRef] [PubMed]

Dong, B.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

Fedoruk, M.

J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[CrossRef] [PubMed]

Feldmann, J.

J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[CrossRef] [PubMed]

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Gan, L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Gschneidtner, T.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Gu, Z.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Guffey, M. J.

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
[CrossRef] [PubMed]

Guo, H.-L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Huang, C.-H.

J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013).
[CrossRef] [PubMed]

J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
[CrossRef] [PubMed]

J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012).
[CrossRef]

Huang, L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Iatì, M. A.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Jäckel, F.

J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[CrossRef] [PubMed]

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

Johansson, P.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Juan, M. L.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Jureller, J. E.

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Käll, M.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Kim, H. Y.

Kou, X.

W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[CrossRef] [PubMed]

Kourmanov, B.

Kraussc, T. F.

M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[CrossRef]

Kuo, M.-K.

J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013).
[CrossRef] [PubMed]

J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
[CrossRef] [PubMed]

Lehmuskero, A.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Li, J.-F.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Li, Z.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

Li, Z.-Y.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Liaw, J.-W.

J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013).
[CrossRef] [PubMed]

J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
[CrossRef] [PubMed]

J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012).
[CrossRef]

Ling, L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Liu, M.

Lutich, A. A.

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

Ma, H.

H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012).
[CrossRef] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Mazil, M.

M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[CrossRef]

Meneghetti, M.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Messina, E.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Miljkovic, V. D.

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Ni, W.

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[CrossRef] [PubMed]

Nori, F.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Oddershede, L. B.

H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Ogier, R.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Orrit, M.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Pelton, M.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
[CrossRef] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

Pesic, J.

Ploschner, M.

M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Roxworthy, B. J.

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Saija, R.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Scherer, N. F.

Z. Yan, N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[CrossRef]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
[CrossRef] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Shalin, A. S.

A. S. Shalin, S. V. Sukhov, “Optical forces in plasmonic nanoantennas,” Quantum Electron. 42(4), 355–360 (2012).
[CrossRef]

Smith, G.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Sukhov, S. V.

A. S. Shalin, S. V. Sukhov, “Optical forces in plasmonic nanoantennas,” Quantum Electron. 42(4), 355–360 (2012).
[CrossRef]

Sweet, J.

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Tong, L.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Toussaint, K. C.

Trojek, J.

Tsai, H.-Y.

J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012).
[CrossRef]

van Stee, M.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

Verhart, N.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Vigderman, L.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Walker, T.

Wang, J.

W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[CrossRef] [PubMed]

Wang, P.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Xu, H.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

Yan, Z.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

Z. Yan, N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[CrossRef]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

Yang, Z.

W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[CrossRef] [PubMed]

Zemánek, P.

Zhang, S.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

Zhong, X.-L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Zubarev, E. R.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

ACS Nano (5)

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force,” ACS Nano 8(1), 701–708 (2014).
[CrossRef] [PubMed]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, O. M. Maragò, “Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties,” ACS Nano 5(2), 905–913 (2011).
[CrossRef] [PubMed]

Z. Yan, J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,” ACS Nano 6(9), 8144–8155 (2012).
[CrossRef] [PubMed]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[CrossRef] [PubMed]

W. Ni, X. Kou, Z. Yang, J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[CrossRef] [PubMed]

J. Nanophotonics (1)

M. Ploschner, M. Mazil, T. F. Kraussc, K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

J.-W. Liaw, C.-H. Huang, M.-K. Kuo, “Longitudinal plasmon modes of Ag nanorod coupled with a pair of quantum dots,” J. Nanosci. Nanotechnol. 13(10), 6627–6634 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (1)

Z. Yan, N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

F. J. G. de Abajo, “Electromagnetic forces and torques in nanoparticles irradiated by plane waves,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 3–9 (2004).
[CrossRef]

Nano Lett. (8)

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

J. Do, M. Fedoruk, F. Jäckel, J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[CrossRef] [PubMed]

H. Ma, P. M. Bendix, L. B. Oddershede, “Large-scale orientation dependent heating from a single irradiated gold nanorod,” Nano Lett. 12(8), 3954–3960 (2012).
[CrossRef] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

W. Ni, H. Ba, A. A. Lutich, F. Jäckel, J. Feldmann, “Enhancing Single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap,” Nano Lett. 12(9), 4647–4650 (2012).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

J.-W. Liaw, C.-H. Huang, B.-R. Chen, M.-K. Kuo, “Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod,” Nanoscale Res. Lett. 7(1), 546 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14(13), 4584–4588 (2012).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Plasmonics (1)

J.-W. Liaw, H.-Y. Tsai, C.-H. Huang, “Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching,” Plasmonics 7(3), 543–553 (2012).
[CrossRef]

Quantum Electron. (1)

A. S. Shalin, S. V. Sukhov, “Optical forces in plasmonic nanoantennas,” Quantum Electron. 42(4), 355–360 (2012).
[CrossRef]

Other (1)

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech. House, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of GNR irradiated by a z-polarized plane wave with a wavevector k along y axis. θ: angle between long axis of GNR and z axis. λ: wavelength. PL: dipole monent. M: net optical torque. A circle with a cross (⊗): a vector pointing into the plane, and a circle with a dot at center ⊙: a vector out of the plane. ∣∣: parallel mode, ⊥: perpendicular mode.

Fig. 2
Fig. 2

(a) Optical torque versus wavelength for GNR of r = 20 nm and AR = 4 in water, where θ = 15°, 30°, 45°, 60°, 75° and laser fluence = 25 MW/cm2. (b) Absorption efficiency and (c) efficiency of optical torque (nN-nm/(MW/cm2)) versus wavelength.

Fig. 3
Fig. 3

(a) Optical torques (fluence: 25 MW/cm2) and (b) efficiencies of optical torque (nN-nm/(MW/cm2)) versus angle θ for GNR of r = 20 nm and AR = 4 at 785 nm and 1064 nm.

Fig. 4
Fig. 4

(a) Optical torques (fluence: 25 MW/cm2), (b) absorption efficiencies, (c) efficiencies of optical torque (nN-nm/(MW/cm2)), and (d) turning point and LSPR for GNR of r = 20 nm with different ARs (2 to 6) at θ = 45° versus wavelength.

Fig. 5
Fig. 5

Efficiency of optical torque (nN-nm/(MW/cm2)) for GNR of r = 20 nm at θ = 45° with various AR (2 to 6), irradiated by different lasers of 685 nm, 785 nm and 1064 nm.

Fig. 6
Fig. 6

(a) Optical torques (fluence: 25 MW/cm2), (b) absorption efficiencies and (c) efficiencies of optical torque (nN-nm/(MW/cm2)) of GNR of AR = 4 with different radius (r = 10 nm, 15 nm, 20 nm) at θ = 45° versus wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T= 1 2 Re{ εE E ¯ +μH H ¯ 1 2 ( εE E ¯ +μH H ¯ )I }
F= S Tnds ,
M= S r×Tnds
P a = 1 2 Re{ S E× H ¯ nds }.
Q a = P a / A S i
P L = α L E i e L e L
M= 1 2 Re( P L × E ¯ i )= 1 4 Re( α L ) | E i | 2 sin2θ e y = 1 4 | α L | | E i | 2 cosϕsin2θ e y

Metrics