Abstract

We study the performance of novel quadrature amplitude modulation (QAM) constellations for 100 Gb/s transmission by a directly-modulated laser. Due to the strong nonlinearity of a directly-modulated laser, rectangular constellations suffer a large penalty from their regular spacing between symbols. We present a method for synthesizing irregular constellations which position symbols more efficiently. We will demonstrate the improved performance of these novel constellations over the conventional rectangular constellation as well as the superior performance achievable with digital QAM compared to optimally bit-loaded discrete-multitone modulation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
    [CrossRef]
  2. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002).
    [CrossRef]
  3. J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5
  4. J. D. Ingham, R. V. Penty, I. H. White, D. G. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in OFC/NFOEC” (2011), p. OThZ3.
  5. J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.
  6. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19, 26551–26556 (2011).
    [CrossRef]
  7. J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in “Proc. Eur. Conf. Opt. Commun.”, (2012), p. P6.05.
  8. L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, C. Lu, “Experimental demonstration of 10 Gb/s multilevel carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21, 6459–6465 (2013).
    [CrossRef] [PubMed]
  9. J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
    [CrossRef]
  10. W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.
  11. J. Armstrong, “OFDM for optical communications,” J. Lightw. Technol. 27, 189–204 (2009).
    [CrossRef]
  12. A. F. Shalash, K. K. Parhi, “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Trans. Commun. 47, 1655–1667 (1999).
    [CrossRef]
  13. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
    [CrossRef]
  14. M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
    [CrossRef]
  15. I. Lyubomirsky, W. A. Ling, “Digital QAM modulation and equalization for high performance 400 GbE data center modules,” in OFC/NFOEC,” (2014).
  16. I. Dedic, “56Gs/s ADC: Enabling 100GbE,” in OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.
  17. “LEIA digital-to-analog converter,” www.fujitsu.com/downloads/MICRO/fme/documentation/c60.pdf .
  18. “LUKE analog-to-digital converter,” www.fujitsu.com/downloads/MICRO/fme/documentation/c63.pdf .
  19. A. S. Karar, J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25, 757–760 (2013).
    [CrossRef]
  20. E. Vanin, “Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion,” Opt. Express 19, 4280–4293 (2011).
    [CrossRef] [PubMed]
  21. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation (John Wiley and Sons, 1999).
  22. J. Ashbrook, “Real-time implementation of dfe,” (Oct. 2013). Private communication.
  23. J. G. Smith, “Odd-bit quadrature amplitude-shift keying,” IEEE Trans. Commun. 23, 385–389 (1975).
    [CrossRef]
  24. P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4, 3039–3050 (2005).
    [CrossRef]
  25. J. D’Ambrosia, M. Gustlin, P. Anslow, “802.3bj FEC overview and status,” in “IEEE 802.3bm, 40 Gb/s and 100 Gb/s Fiber Optic Task Force,” (2012).
  26. J. Campello, “Practical bit loading for DMT,” in Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.
  27. D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
    [CrossRef]

2014 (1)

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

2013 (4)

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
[CrossRef]

A. S. Karar, J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25, 757–760 (2013).
[CrossRef]

C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
[CrossRef]

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, C. Lu, “Experimental demonstration of 10 Gb/s multilevel carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21, 6459–6465 (2013).
[CrossRef] [PubMed]

2012 (1)

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

2011 (2)

2010 (1)

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

2009 (1)

J. Armstrong, “OFDM for optical communications,” J. Lightw. Technol. 27, 189–204 (2009).
[CrossRef]

2005 (1)

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4, 3039–3050 (2005).
[CrossRef]

1999 (1)

A. F. Shalash, K. K. Parhi, “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Trans. Commun. 47, 1655–1667 (1999).
[CrossRef]

1975 (1)

J. G. Smith, “Odd-bit quadrature amplitude-shift keying,” IEEE Trans. Commun. 23, 385–389 (1975).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002).
[CrossRef]

Alouini, M.-S.

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4, 3039–3050 (2005).
[CrossRef]

Anslow, P.

J. D’Ambrosia, M. Gustlin, P. Anslow, “802.3bj FEC overview and status,” in “IEEE 802.3bm, 40 Gb/s and 100 Gb/s Fiber Optic Task Force,” (2012).

Armstrong, J.

J. Armstrong, “OFDM for optical communications,” J. Lightw. Technol. 27, 189–204 (2009).
[CrossRef]

Ashbrook, J.

J. Ashbrook, “Real-time implementation of dfe,” (Oct. 2013). Private communication.

Barros, D. J. F.

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

Campello, J.

J. Campello, “Practical bit loading for DMT,” in Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.

Cartledge, J. C.

A. S. Karar, J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25, 757–760 (2013).
[CrossRef]

Chi, N.

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
[CrossRef]

Cunningham, D. G.

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
[CrossRef]

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in “Proc. Eur. Conf. Opt. Commun.”, (2012), p. P6.05.

J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.

J. D. Ingham, R. V. Penty, I. H. White, D. G. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in OFC/NFOEC” (2011), p. OThZ3.

D’Ambrosia, J.

J. D’Ambrosia, M. Gustlin, P. Anslow, “802.3bj FEC overview and status,” in “IEEE 802.3bm, 40 Gb/s and 100 Gb/s Fiber Optic Task Force,” (2012).

Dedic, I.

I. Dedic, “56Gs/s ADC: Enabling 100GbE,” in OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.

Deng, L.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

Drenski, T.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Gao, Y. L.

Geng, L.

J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
[CrossRef]

Gustlin, M.

J. D’Ambrosia, M. Gustlin, P. Anslow, “802.3bj FEC overview and status,” in “IEEE 802.3bm, 40 Gb/s and 100 Gb/s Fiber Optic Task Force,” (2012).

Ingham, J. D.

J. D. Ingham, R. V. Penty, I. H. White, D. G. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in OFC/NFOEC” (2011), p. OThZ3.

Jensen, J. B.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19, 26551–26556 (2011).
[CrossRef]

Kahn, J. M.

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

Karar, A. S.

A. S. Karar, J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25, 757–760 (2013).
[CrossRef]

Kieffer, J. C.

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4, 3039–3050 (2005).
[CrossRef]

Lau, A. P. T.

Li, L.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Ling, W. A.

I. Lyubomirsky, W. A. Ling, “Digital QAM modulation and equalization for high performance 400 GbE data center modules,” in OFC/NFOEC,” (2014).

Liu, B.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Lu, C.

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
[CrossRef]

I. Lyubomirsky, W. A. Ling, “Digital QAM modulation and equalization for high performance 400 GbE data center modules,” in OFC/NFOEC,” (2014).

Monroy, I. T.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19, 26551–26556 (2011).
[CrossRef]

Nishihara, M.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Olmedo, M. I.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

Othman, M. B.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

Parhi, K. K.

A. F. Shalash, K. K. Parhi, “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Trans. Commun. 47, 1655–1667 (1999).
[CrossRef]

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation (John Wiley and Sons, 1999).

Penty, R. V.

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
[CrossRef]

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in “Proc. Eur. Conf. Opt. Commun.”, (2012), p. P6.05.

J. D. Ingham, R. V. Penty, I. H. White, D. G. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in OFC/NFOEC” (2011), p. OThZ3.

J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.

Pham, T. T.

Popov, S.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

Proakis, J. G.

J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5

Rasmussen, J. C.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Rodes, R.

Salehi, M.

J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5

Shalash, A. F.

A. F. Shalash, K. K. Parhi, “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Trans. Commun. 47, 1655–1667 (1999).
[CrossRef]

Siuzdak, J.

Smith, J. G.

J. G. Smith, “Odd-bit quadrature amplitude-shift keying,” IEEE Trans. Commun. 23, 385–389 (1975).
[CrossRef]

Takahara, T.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Tanaka, T.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Tao, L.

Tao, Z.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
[CrossRef]

Turkiewicz, J.

Vanin, E.

Vitthaladevuni, P. K.

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4, 3039–3050 (2005).
[CrossRef]

Wang, Y. G.

Wei, J. L.

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
[CrossRef]

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in “Proc. Eur. Conf. Opt. Commun.”, (2012), p. P6.05.

J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.

White, I. H.

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
[CrossRef]

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in “Proc. Eur. Conf. Opt. Commun.”, (2012), p. P6.05.

J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.

J. D. Ingham, R. V. Penty, I. H. White, D. G. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in OFC/NFOEC” (2011), p. OThZ3.

Wieckowski, M.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19, 26551–26556 (2011).
[CrossRef]

Xu, X.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

Yan, W. Z.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

Zhang, X.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

Zhong, Q.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

Zuo, T.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

IEEE Commun. Mag. (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51, 50–57 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, I. T. Monroy, “Experimental investigations of 3-D-/4-D-CAP modulation with directly modulated VCSELs,” IEEE Photon. Technol. Lett. 24, 2009–2011 (2012).
[CrossRef]

A. S. Karar, J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25, 757–760 (2013).
[CrossRef]

IEEE Trans. Commun. (2)

A. F. Shalash, K. K. Parhi, “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Trans. Commun. 47, 1655–1667 (1999).
[CrossRef]

J. G. Smith, “Odd-bit quadrature amplitude-shift keying,” IEEE Trans. Commun. 23, 385–389 (1975).
[CrossRef]

IEEE Trans. Wirel. Commun. (1)

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wirel. Commun. 4, 3039–3050 (2005).
[CrossRef]

J. Lightw. Technol. (4)

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol. 32, 798–804 (2014).
[CrossRef]

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightw. Technol. 31, 1367–1373 (2013).
[CrossRef]

J. Armstrong, “OFDM for optical communications,” J. Lightw. Technol. 27, 189–204 (2009).
[CrossRef]

D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010).
[CrossRef]

Opt. Express (3)

Other (14)

J. L. Wei, D. G. Cunningham, R. V. Penty, I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in “Proc. Eur. Conf. Opt. Commun.”, (2012), p. P6.05.

W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in OFC/NFOEC 2013,” (Anaheim, USA, 2013), p. OM3H.1.

I. Lyubomirsky, W. A. Ling, “Digital QAM modulation and equalization for high performance 400 GbE data center modules,” in OFC/NFOEC,” (2014).

I. Dedic, “56Gs/s ADC: Enabling 100GbE,” in OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.

“LEIA digital-to-analog converter,” www.fujitsu.com/downloads/MICRO/fme/documentation/c60.pdf .

“LUKE analog-to-digital converter,” www.fujitsu.com/downloads/MICRO/fme/documentation/c63.pdf .

J. D’Ambrosia, M. Gustlin, P. Anslow, “802.3bj FEC overview and status,” in “IEEE 802.3bm, 40 Gb/s and 100 Gb/s Fiber Optic Task Force,” (2012).

J. Campello, “Practical bit loading for DMT,” in Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002).
[CrossRef]

J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5

J. D. Ingham, R. V. Penty, I. H. White, D. G. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in OFC/NFOEC” (2011), p. OThZ3.

J. L. Wei, L. Geng, R. V. Penty, I. H. White, D. G. Cunningham, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in OFC/NFOEC,” (2013), p. OW4A.5.

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation (John Wiley and Sons, 1999).

J. Ashbrook, “Real-time implementation of dfe,” (Oct. 2013). Private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The QAM transmitter first encodes bits into complex QAM symbols, which become the complex amplitudes of baseband pulses. The baseband QAM signal then modulates a digital RF subcarrier. The digital QAM signal is finally converted to an analog drive signal by a high-speed DAC.

Fig. 2
Fig. 2

The QAM receiver first digitizes the received QAM signal and then down-converts the QAM signal to produce a complex baseband signal. The baseband signal is then equalized with a fractionally-spaced equalizer consisting of a feedforward filter. The equalized output is then downsampled to the symbol rate.

Fig. 3
Fig. 3

(a) The QAM spectrum before digital pre-emphasis. (b) The spectrum after digital pre-emphasis.

Fig. 4
Fig. 4

The received symbols are plotted in blue and the ideal symbols are in red. A rectangular 32-QAM constellation is suboptimal since its probability of error is mainly determined by the outer symbols. A more optimal constellation would pack larger-magnitude symbols less densely than smaller-magnitude symbols.

Fig. 5
Fig. 5

Constellation A is constructed from eight concentric rings of four symbols each.

Fig. 6
Fig. 6

A 31-point subset of the hexagonal lattice is the initial condition for generating constellation B. The hexagonal lattice does not naturally lend itself to generating a 32-point constellation.

Fig. 7
Fig. 7

Initial condition for generating constellation C by perturbation of the 32-QAM rectangular cross constellation.

Fig. 8
Fig. 8

(a) The drive current to intensity transfer function is plotted for various levels of bias current. (b) The RIN spectrum is plotted for various levels of bias current.

Fig. 9
Fig. 9

The received symbols are plotted in blue and the ideal symbols are in red. (a) Optimized 32-QAM constellation A formed from eight concentric rings. (b) Optimized 31-QAM constellation B constructed from perturbation of the hexagonal lattice. (c) Optimized 32-QAM constellation C formed from perturbation of the rectangular cross constellation (using the same bit mapping).

Fig. 10
Fig. 10

(a) SER comparison of the rectangular constellation and constellations A,B, and C for an FFE-only receiver. (b) SER comparison of the constellations for an FFE-DFE receiver, with a single tap in the DFE.

Fig. 11
Fig. 11

BER comparison of QAM and DMT for the cases of a rectangular 32-QAM constellation and constellation C. When employed, the DFE has a single feedback tap.

Tables (1)

Tables Icon

Table 1 Parameters for simulated QAM and DMT systems

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f RC = ( 1 + β ) f sym 2 ,
f DAC > 4 f RC = 2 ( 1 + β ) f sym .
h rect ( t ) = { 1 if 0 t < T sym 0 otherwise
PAPR = peak signal power mean signal power .
y [ n ] = { x [ n ] if x 0 x [ n ] x 0 x 0 if x [ n ] < x 0 x 0 if x [ n ] > x 0
R cl = x 0 2 σ x 2 ,
2 b < 31 k < 2 b + 1 .
b < k log 2 31 < b + 1
b k < log 2 31 < b k + 1 k .
log 2 31 1 k < b k < log 2 31 .

Metrics