Abstract

Single femtosecond laser-based coherent anti-Stokes Raman scattering (CARS) microscopy, using a photonic crystal fiber (PCF) pumped in the near-IR to generate a supercontinuum for the Stokes source, is rapidly being adopted as a cost-effective approach. A PCF with two closely-lying zero dispersion wavelengths is a popular choice for the Stokes source, but it is often limited to imaging lipids. A polarization-maintaining PCF with two far-lying zero dispersion wavelengths offers important advantages for polarization CARS microscopy, and for CARS imaging in the fingerprint region. This PCF fiber, though commercially available, has limited use for CARS microscopy in the C-H bond region. The main problem is that the supercontinuum from this fiber is typically noisier than that from a standard PCF with two closely-lying zero dispersion wavelengths. To overcome this, we determined the optimum operating conditions for generating a low-noise supercontinuum out of a PCF with two far-lying zero dispersion wavelengths, in terms of the input parameters of the excitation pulse. We measured the relative intensity noise (RIN) of the Stokes and the corresponding CARS signal as a function of the input laser parameters in this fiber. We showed that the results of CARS imaging using this alternate fiber are comparable to those achieved using the standard fiber, for input laser pulse conditions of low average power, narrow pulse width with slightly positive chirp, and polarization direction parallel to the slow axis of the selected fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28(13), 1123–1125 (2003).
    [CrossRef] [PubMed]
  2. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying Zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
    [CrossRef] [PubMed]
  3. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010).
    [CrossRef] [PubMed]
  4. T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [CrossRef] [PubMed]
  5. A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
    [CrossRef] [PubMed]
  6. J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
    [CrossRef]
  7. B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
    [CrossRef] [PubMed]
  8. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
    [CrossRef] [PubMed]
  9. B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett. 36(13), 2396–2398 (2011).
    [CrossRef] [PubMed]
  10. B. Smith, M. Naji, S. Murugkar, E. Alarcon, C. Brideau, P. Stys, H. Anis, “Portable, miniaturized, fibre delivered, multimodal CARS exoscope,” Opt. Express 21(14), 17161–17175 (2013).
    [CrossRef] [PubMed]
  11. H. Tu, S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J Biophotonics 7(1-2), 9–22 (2014).
    [CrossRef] [PubMed]
  12. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
    [CrossRef] [PubMed]
  13. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012).
    [CrossRef] [PubMed]
  14. NKT, “Femtowhite CARS, Supercontinuum Device for Coherent Anti-Stokes Raman Scattering Applications,” www.nktphotonics.com/files/files/femtoWHITE-CARS.pdf ‎.
  15. NKT, “NL-PM-750, Nonlinear Photonic Crystal Fiber,” http://www.nktphotonics.com/files/files/NL-PM- 750–090612.pdf.
  16. C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011).
    [CrossRef] [PubMed]
  17. K. Shi, P. Li, Z. Liua, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
    [CrossRef]
  18. H. Kano, H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13(4), 1322–1327 (2005).
    [CrossRef] [PubMed]
  19. P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
    [CrossRef]
  20. P. Klarskov, A. Isomäki, K. P. Hansen, P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19(27), 26672–26683 (2011).
    [CrossRef] [PubMed]
  21. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [CrossRef] [PubMed]
  22. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  23. M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
    [CrossRef] [PubMed]
  24. A. V. Husalou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonics crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [CrossRef]
  25. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
    [CrossRef] [PubMed]
  26. G. P. Agrawal, “Nonlinear Fiber Optics,” fifth edition, Academic press, NY. (2013).
  27. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [CrossRef] [PubMed]
  28. J. M. Dudley, S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [CrossRef] [PubMed]
  29. M. Naji, S. Murugkar, K. Khan, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fibers,” Proc. SPIE 7569, 75692S (2010).
    [CrossRef]
  30. A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
    [CrossRef]
  31. Z. Zhu, T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fiber,” J. Opt. Soc. Am. B 21(2), 249–257 (2004).
    [CrossRef]
  32. C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef] [PubMed]

2014 (2)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[CrossRef] [PubMed]

H. Tu, S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J Biophotonics 7(1-2), 9–22 (2014).
[CrossRef] [PubMed]

2013 (2)

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

B. Smith, M. Naji, S. Murugkar, E. Alarcon, C. Brideau, P. Stys, H. Anis, “Portable, miniaturized, fibre delivered, multimodal CARS exoscope,” Opt. Express 21(14), 17161–17175 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (5)

B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett. 36(13), 2396–2398 (2011).
[CrossRef] [PubMed]

P. Klarskov, A. Isomäki, K. P. Hansen, P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19(27), 26672–26683 (2011).
[CrossRef] [PubMed]

B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Naji, S. Murugkar, K. Khan, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fibers,” Proc. SPIE 7569, 75692S (2010).
[CrossRef]

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010).
[CrossRef] [PubMed]

T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

2005 (2)

2004 (2)

2003 (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28(13), 1123–1125 (2003).
[CrossRef] [PubMed]

2002 (2)

J. M. Dudley, S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

2001 (1)

A. V. Husalou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonics crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef]

Alarcon, E.

Andersen, P. E.

Andersen, T.

Anis, H.

Bandelow, U.

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

Bang, O.

Baumgartl, M.

Beer, S.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

Boppart, S. A.

H. Tu, S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J Biophotonics 7(1-2), 9–22 (2014).
[CrossRef] [PubMed]

Brideau, C.

Brown, T. G.

Buckup, T.

C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011).
[CrossRef] [PubMed]

Chen, B. C.

B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

Cleff, C.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

J. M. Dudley, S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Demircan, A.

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Dong, L.

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

J. M. Dudley, S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Falk, P.

Fallnich, C.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

Farrel, G.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Fermann, M. E.

Freudiger, C. W.

Frosz, M. H.

Fu, L.

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Gottschall, T.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Groß, P.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

Hamaguchi, H. O.

Han, Y.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Hansen, K.

Hansen, K. P.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

A. V. Husalou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonics crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef]

Hilligsøe, K. M.

Hou, L.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Husalou, A. V.

A. V. Husalou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonics crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef]

Isomäki, A.

Jauregui, C.

Johnston, R. S.

Kano, H.

Kao, F. J.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Keiding, S.

Keiding, S. R.

Khan, K.

M. Naji, S. Murugkar, K. Khan, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fibers,” Proc. SPIE 7569, 75692S (2010).
[CrossRef]

Klarskov, P.

Kleinschmidt, L.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Kristiansen, R.

Larsen, J.

Larsen, J. J.

Lee, T.

Li, P.

K. Shi, P. Li, Z. Liua, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Lim, S. H.

B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

Limpert, J.

Liu, H.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Liua, Z.

K. Shi, P. Li, Z. Liua, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

Mølmer, K.

Motzkus, M.

C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011).
[CrossRef] [PubMed]

Murugkar, S.

Naji, M.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Nielsen, C.

Paulsen, H.

Paulsen, H. N.

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

Pezacki, J. P.

Pohling, C.

C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011).
[CrossRef] [PubMed]

Ridsdale, A.

Rothhardt, J.

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Saar, B. G.

Sagnier, A.

Sang, X.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Seibel, E. J.

Shi, K.

K. Shi, P. Li, Z. Liua, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010).
[CrossRef] [PubMed]

Smalyukh, I. I.

Smith, B.

Stolow, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

Stys, P.

Stys, P. K.

Sung, J.

B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

Thøgersen, J.

Thomas, B. K.

Trivedi, R. P.

Tu, H.

H. Tu, S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J Biophotonics 7(1-2), 9–22 (2014).
[CrossRef] [PubMed]

Tünnermann, A.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Wan, H. N.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Wang, K.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Wang, M. H.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Wu, Q.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Wu, X.

B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

Xia, C.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Xie, X. S.

B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett. 36(13), 2396–2398 (2011).
[CrossRef] [PubMed]

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Yan, B.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Yu, C.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Yuan, J.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Zhou, G.

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Zhu, Z.

Annu Rev Anal Chem (Palo Alto Calif) (1)

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microstructured fiber,” Appl. Phys. B 101(1-2), 167–172 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

K. Shi, P. Li, Z. Liua, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

J Biophotonics (2)

H. Tu, S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J Biophotonics 7(1-2), 9–22 (2014).
[CrossRef] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

B. C. Chen, J. Sung, X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

C. Pohling, T. Buckup, M. Motzkus, “Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples,” J. Biomed. Opt. 16(2), 021105 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (8)

P. Klarskov, A. Isomäki, K. P. Hansen, P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express 19(27), 26672–26683 (2011).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
[CrossRef] [PubMed]

B. Smith, M. Naji, S. Murugkar, E. Alarcon, C. Brideau, P. Stys, H. Anis, “Portable, miniaturized, fibre delivered, multimodal CARS exoscope,” Opt. Express 21(14), 17161–17175 (2013).
[CrossRef] [PubMed]

H. Kano, H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13(4), 1322–1327 (2005).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying Zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (3)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

A. V. Husalou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonics crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Naji, S. Murugkar, K. Khan, H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fibers,” Proc. SPIE 7569, 75692S (2010).
[CrossRef]

Prog. Electromagnetics Res. (1)

J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrel, L. Hou, “Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,” Prog. Electromagnetics Res. 141(65), 659–670 (2013).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (3)

G. P. Agrawal, “Nonlinear Fiber Optics,” fifth edition, Academic press, NY. (2013).

NKT, “Femtowhite CARS, Supercontinuum Device for Coherent Anti-Stokes Raman Scattering Applications,” www.nktphotonics.com/files/files/femtoWHITE-CARS.pdf ‎.

NKT, “NL-PM-750, Nonlinear Photonic Crystal Fiber,” http://www.nktphotonics.com/files/files/NL-PM- 750–090612.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Group velocity dispersion parameter (β2) of PCF with two closely-lying ZDWs and (b) PCF with two far-lying ZDWs (Courtesy of Crystal Fiber Inc.), (c) The supercontinuum spectra out of two far ZDWs (black line) and two closely-lying ZDWs(blue dotted line) fibers for a same input power of 530 mW and pulse duration of ~100 fs. Vertical lines indicate the position of two ZDWs. (Intensity scales of two SCs are not exactly the same). (d) CARS spectrum of Oil, ~2850 cm−1, Nitrobenzene, ~1350 cm−1, and Toluene, ~990 cm−1, using the spectral focusing technique, our existing miniaturized fiber delivered CARS exoscope and the two far-lying ZDWs fiber to generate SC. (The exposure times of each CARS spectra were 0.1s, 5s and 1s respectively).

Fig. 2
Fig. 2

The measured SC spectrum out of the PCF with two far-lying ZDWs, for low input average laser power. As it is shown, the soliton fission mechanism happens around 34 mW of input power, generating a red-shifted soliton around 830 nm and corresponding blue-shifted non-solitonic peak around 620 nm. At the higher input average power, the presence of several solitons with different red shifted frequencies causes a broad spectrum in the blue and red spectral regions of the generated SC at the input powers more than 160 mW. (Average coupling efficiency, η = 40%).

Fig. 3
Fig. 3

Soliton fission length vs. input average power before coupling to the fiber. The intersection of vertical dotted line at 300 mW and soliton fission length (Lfiss) curve indicates the value of the fission length for each fiber type. (Coupling efficiency = 40%, laser pulse width = 100 fs).

Fig. 4
Fig. 4

Experimental setup: (1) Ti:sapphire laser, (2) Faraday isolator, (3) half wave plate, (4) beam splitter, (5) prism compressor, (6) microscope objective lens (40x), (7) PCF with two far/closely ZDWs, (8) collimating aspheric lens of 5mm focal length, (9) band pass filter, (10) flip mirror for routing to RIN measurement setup, (11) dichroic mirror for overlapping Stokes beam on the pump beam, (12) X-Y scanning mirrors, (13) focusing objective lens, (14) short pass filter, (15) PMT amplifier and discriminator, (16) diffraction grating mirror and (17) fast photodetector.

Fig. 5
Fig. 5

The RIN of the Stokes beam, using fibers with two far and two closely-lying ZDWs. The error bars are the variance of the RIN values at each pulse width. The input average power was 300 mW with an average coupling efficiency 40%. The red dashed line shows the value of the RIN of fs laser beam at the 100 fs, which is taken as the minimum theoretical RIN of the generated Stokes beam out of the both fibers. Lower left Corner: the RF power spectrum of the Stokes beam out of two far-lying ZDWs PCF (Resolution bandwidth = 1000 Hz).

Fig. 6
Fig. 6

The RIN of the CARS signal of an oil sample, using fibers with two far and two closely lying ZDWs for 300 mW average power of the laser coupled to both PCF fibers. The error bars are the variance of the RIN values at each pulse width (Negative sign indicate the negative chirp).

Fig. 7
Fig. 7

The RIN of the Stokes beams generated by two different polarization angles of fs laser beam vs. input average power of the fs laser coupled to the PCF with two far-lying ZDWs, with a constant pulse width of ~100 fs. Error bars were negligible compared to the size of data points.

Fig. 8
Fig. 8

The RIN of the Stokes beams generated by two different polarization angles of 45° and 0° angles of fs laser coupled to the two far-lying ZDWs fiber, (The measured RIN value variance was ~+/− 0.54 dB/Hz).

Fig. 9
Fig. 9

The RIN of the CARS signal using PCF with two far-lying ZDWs, generated by two different Stokes beams of two different input laser polarization angles (0° and 45° to the slow axis of the PCF). Average input laser power was ~100 mW and pulse width is 100 fs.

Fig. 10
Fig. 10

The 0° Stokes power (~100 fs pulse width) at the focal point of the CARS microscope, at the oil sample, and the intensity of its generated CARS signal, as a function of the average laser power coupled to the PCF with two far-lying ZDWs. The averaged coupling efficiency = 40% (measurement error was less than 5%).

Fig. 11
Fig. 11

The CARS image of the 4.5 μm polystyrene bead sample using two far-lying ZDWs fiber under similar imaging conditions, but with optimized (a) and non-optimized (b) input conditions of the fiber. (a) Pumping the PCF with 100 fs laser and average input power ~100 mW and (b) pumping the PCF with a 230 fs laser beam and average input power ~300 mW coupled into the fiber. Frame size is 256x 256 pixels with ~5.5 s acquisition time per frame.

Fig. 12
Fig. 12

CARS images (256 x 256 pixels) of myelin from fixed unstained mouse nerve using two far-lying ZDWs fiber module under optimum operating condition.

Fig. 13
Fig. 13

(Above) (a) CARS images of 4.5 μm polystyrene bead sample using two far-lying ZDWs fiber operating at its optimum point and (b) two closely-lying ZDWs fiber operating at 300 mW average power input fs laser using our existing miniaturized fiber delivered CARS exoscope. (Below) (c) The intensity profile of a selected bead image, in above images ((a) and (b)), using both fibers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L fiss L D L NL = T 0 2 γ P 0 | β 2 |
I CARS I Stokes I Pump 2

Metrics