Abstract

Multi-wavelength operation of Q-switched Nd-doped YGd2Sc2Al2GaO12 garnet ceramic lasers has been investigated. Dual-wavelength emission around ~1.06 µm has been demonstrated both in the actively and passively Q-switched configurations. The ratio of output energy between the two laser wavelengths was driven by the temperature elevation caused by pumping. Passively Q-switched operation yields dual-frequency emission of two unsynchronized laser pulses carried by distinct transverse modes whereas active Q-switched configuration offers the possibility of synchronizing emission at the two wavelengths.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [CrossRef]
  2. A. Ikesue, Y. L. Aung, “Synthesis and performances of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
    [CrossRef]
  3. Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
    [CrossRef]
  4. Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
    [CrossRef]
  5. A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
    [CrossRef]
  6. J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
    [CrossRef]
  7. L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
    [CrossRef] [PubMed]
  8. M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
    [CrossRef] [PubMed]
  9. H. Okada, M. Tanaka, H. Kiriyama, Y. Nakai, Y. Ochi, A. Sugiyama, H. Daido, T. Kimura, T. Yanagitani, H. Yagi, N. Meichin, “Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” Opt. Lett. 35(18), 3048–3050 (2010).
    [CrossRef] [PubMed]
  10. A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
    [CrossRef]
  11. A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
    [CrossRef]
  12. A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
    [CrossRef]

2012 (3)

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

2011 (1)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[CrossRef]

2010 (3)

2009 (1)

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

2008 (1)

A. Ikesue, Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

2007 (1)

Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[CrossRef]

2006 (1)

A. Ikesue, Y. L. Aung, “Synthesis and performances of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

2004 (1)

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Alombert-Goget, G.

A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
[CrossRef]

Aung, Y. L.

A. Ikesue, Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

A. Ikesue, Y. L. Aung, “Synthesis and performances of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Boulesteix, R.

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

Boulon, G.

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
[CrossRef]

Brenier, A.

A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[CrossRef]

A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
[CrossRef]

Carreaud, J.

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

Couderc, V.

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

Daido, H.

Eichler, H. J.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Fu, P.

A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
[CrossRef]

Guyot, Y.

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

Hagiwara, J.

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Ikesue, A.

A. Ikesue, Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[CrossRef]

A. Ikesue, Y. L. Aung, “Synthesis and performances of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

Jaffres, L.

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

Kaminskii, A. A.

M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Kimura, T.

Kiriyama, H.

Kurokawa, H.

Labruyère, A.

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

Lu, J.

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Maitre, A.

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

Maître, A.

Meichin, N.

Nakai, Y.

Ochi, Y.

Okada, H.

Rabinovitch, Y.

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

Rhee, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Saikawa, J.

Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[CrossRef]

Sallé, C.

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Gain structuration in dual-wavelength Nd:YSAG ceramic lasers,” Opt. Express 20(23), 25596–25602 (2012).
[CrossRef] [PubMed]

Sato, Y.

Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[CrossRef]

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Senatsky, Y.

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Shirakawa, A.

M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Sugiyama, A.

Taira, T.

Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Tanaka, M.

Tokurakawa, M.

M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Ueda, K.

M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Wu, Y.

A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
[CrossRef]

A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
[CrossRef]

Yagi, H.

H. Okada, M. Tanaka, H. Kiriyama, Y. Nakai, Y. Ochi, A. Sugiyama, H. Daido, T. Kimura, T. Yanagitani, H. Yagi, N. Meichin, “Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” Opt. Lett. 35(18), 3048–3050 (2010).
[CrossRef] [PubMed]

M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Yanagitani, T.

H. Okada, M. Tanaka, H. Kiriyama, Y. Nakai, Y. Ochi, A. Sugiyama, H. Daido, T. Kimura, T. Yanagitani, H. Yagi, N. Meichin, “Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” Opt. Lett. 35(18), 3048–3050 (2010).
[CrossRef] [PubMed]

M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:YGd2Sc2Al2GaO12 ceramics,” Opt. Express 18(5), 4390–4395 (2010).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

Zhang, J.

A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, Y. L. Aung, “Synthesis and performances of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010).
[CrossRef]

Laser Phys. Lett. (4)

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, “Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver,” Laser Phys. Lett. 1(10), 500–506 (2004).
[CrossRef]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, T. Yanagitani, “Nonlinear laser χ(3) effects in novel garnet-type fine-grained ceramic-host YGd2Sc2Al2GaO12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

J. Carreaud, A. Labruyère, L. Jaffres, V. Couderc, A. Maitre, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, C. Sallé, “Wavelength switching in Nd:YSAG ceramic laser induced by thermal effect,” Laser Phys. Lett. 9(5), 344–349 (2012).
[CrossRef]

A. Brenier, G. Alombert-Goget, Y. Guyot, G. Boulon, “Laser and thermal properties of Nd:YGd2 Sc2 Al2Ga O12 garnet ceramic,” Laser Phys. Lett. 9(10), 697–703 (2012).
[CrossRef]

Nat. Photonics (1)

A. Ikesue, Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

Y. Sato, J. Saikawa, T. Taira, A. Ikesue, “Characteristics of Nd3+ doped Y3Al5O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the passively Q-switched Nd:GY ceramic laser. Inset: photograph of the set-up.

Fig. 2
Fig. 2

(a) Evolution of the average output laser power as a function of the pump power; (b) temporal profile of a laser pulse; (c) near-field image of the output laser beam obtained with a CCD camera; (d) laser output spectrum for the pump power of 3.9 W.

Fig. 3
Fig. 3

(a) Evolution of the average output laser power as a function of the pump power; (b) temporal profile of a laser pulse; (c) far-field image of the output laser beam obtained with a CCD camera; (d) laser output spectrum for the pump powers of 3.1 W and 3.9 W, respectively.

Fig. 4
Fig. 4

(a) Time-resolved spectra of the two-wavelength active Q-switch laser emission; (b) “cold” and “hot” laser lines inserted in the Nd energy level scheme; (c) example of time position of the gate of the boxcar; (d) Second harmonic generation and sum frequency generation of the two-laser wavelengths.

Fig. 5
Fig. 5

(a) and (b) Time evolution of the “cold” and “hot laser pulses at 0.42 and 1.44 W absorbed pump power; (c) and (d) distribution of the delay between the “cold” and “hot” lines for 0.42 and 1.44 W of absorbed pump power.

Fig. 6
Fig. 6

(a) Laser pulse energy; (b) laser pulse width versus the absorbed pump power at different repetition rate of the AO modulator; (c) image of the wavelength-separated laser beams for two different absorbed pump powers; (d) fraction of pulse energy in each wavelength-separated beam versus absorbed pump power.

Metrics