Abstract

We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm2 were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, D. Bird, D. Day, L. Fu, and D. Morrish, “Femtosecond Biophotonics, core technology and applications,” Cambridge university press (2010).
  2. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  3. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
    [CrossRef] [PubMed]
  4. X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [CrossRef]
  5. R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  6. H. K. Soong, J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
    [CrossRef] [PubMed]
  7. M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
    [CrossRef]
  8. R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
    [CrossRef] [PubMed]
  9. X. Peng, M. Mielke, T. Booth, “High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber,” Opt. Express 19(2), 923–932 (2011).
    [CrossRef] [PubMed]
  10. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
    [CrossRef] [PubMed]
  11. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
    [CrossRef] [PubMed]
  12. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [CrossRef] [PubMed]
  13. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  14. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [CrossRef] [PubMed]
  15. T. D. Bradley, Y. Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gérôme, F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
    [CrossRef]
  16. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [CrossRef] [PubMed]
  17. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [CrossRef]
  18. J. Sun, J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89(12), 8219 (2001).
    [CrossRef]
  19. F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  20. A. V. Husakou, J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [CrossRef] [PubMed]
  21. M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).
  22. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  23. G. Machinet, B. Debord, R. Kling, J. Lopez, F. Gérôme, F. Benabid, and P. Dupriez, “High average power and high energy transport of femtosecond pulses with a low loss Kagome hollow-core photonic crystal fiber for micromachining,” CLEO Europe, CJ-11.2 THU (2013).
  24. P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [CrossRef] [PubMed]

2013 (3)

2012 (1)

2011 (3)

2009 (2)

H. K. Soong, J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[CrossRef] [PubMed]

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

2008 (1)

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001 (3)

A. V. Husakou, J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

J. Sun, J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89(12), 8219 (2001).
[CrossRef]

1997 (1)

X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

1986 (1)

M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Alharbi, M.

Allan, D. C.

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Bäcker, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Beaudou, B.

Benabid, F.

T. D. Bradley, Y. Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gérôme, F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
[CrossRef]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[CrossRef] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[CrossRef] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Ben-Yakar, A.

Beyertt, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Booth, T.

Borrelli, N. F.

Bouwmans, G.

Bradley, T.

Bradley, T. D.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Debord, B.

Delone, N. B.

M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).

Du, D.

X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Dutin, C. F.

Ferhanoglu, O.

Fourcade-Dutin, C.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gérôme, F.

Giesen, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Hand, D. P.

Herrmann, J.

A. V. Husakou, J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Hoy, C. L.

Humbert, G.

Husakou, A. V.

A. V. Husakou, J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Jaworski, P.

Juhasz, T.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

Kasenbacher, A.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Knight, J. C.

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Krainov, V. B.

M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Liu, X.

X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Longtin, J. P.

J. Sun, J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89(12), 8219 (2001).
[CrossRef]

Maier, R. R.

Malta, J. B.

H. K. Soong, J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[CrossRef] [PubMed]

Mangan, B. J.

Mazur, E.

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

McCaughey, R. G.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

Mielke, M.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Mourou, G.

X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Nickel, D.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Niemz, M. H.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Peng, X.

Piyawattanametha, W.

Ra, H.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

Rothholtz, V. S.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

Russell, P. St. J.

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Shephard, J. D.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Smith, C. M.

Solgaard, O.

Soong, H. K.

H. K. Soong, J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[CrossRef] [PubMed]

Strassl, M.

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Sun, H.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

Sun, J.

J. Sun, J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89(12), 8219 (2001).
[CrossRef]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Vincetti, L.

Wadsworth, W. J.

Wang, Y. Y.

West, J. A.

Wheeler, N. V.

Williams, D. P.

Wong, B. J. F.

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

Yildirim, M.

Yu, F.

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Am. J. Ophthalmol. (1)

H. K. Soong, J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, A. Giesen, “Tooth ablationusing a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79(3), 269–271 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

J. Appl. Phys. (1)

J. Sun, J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89(12), 8219 (2001).
[CrossRef]

J. Biomed. Opt. (1)

R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nat. Photonics (1)

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Husakou, J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Sov. Phys. JEPT (1)

M. V. Ammosov, N. B. Delone, V. B. Krainov, “Tunnel ionization of complex atoms of atomic ions in an alternating electromagnetic field,” Sov. Phys. JEPT 64, 1191–1194 (1986).

Other (2)

M. Gu, D. Bird, D. Day, L. Fu, and D. Morrish, “Femtosecond Biophotonics, core technology and applications,” Cambridge university press (2010).

G. Machinet, B. Debord, R. Kling, J. Lopez, F. Gérôme, F. Benabid, and P. Dupriez, “High average power and high energy transport of femtosecond pulses with a low loss Kagome hollow-core photonic crystal fiber for micromachining,” CLEO Europe, CJ-11.2 THU (2013).

Supplementary Material (2)

» Media 1: MOV (1407 KB)     
» Media 2: MOV (6430 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectra of the transmission loss (blue solid curve), GVD (black dashed curve) and the PO (blue dot-dashed curve) for the 7-cell fiber (a) and 19-cell fiber (b). The optical images of the cross section of the fibers are also added.

Fig. 2
Fig. 2

(a) Measured transmitted energy with input energy for 19-cell fiber (blue color-coded) and 7-cell fiber (black color-coded) for the different cases of fiber-length and gas-filling; (b) Output beam-profile evolution with input energy.

Fig. 3
Fig. 3

(a) Bend loss and M2 evolution with bend radius and (b) near field evolution with bend radius for the 7-cell fiber design.

Fig. 4
Fig. 4

High energy delivery: (a) Experimental and (b) theoretical evolution of the spectrum with input energy for the case of He-filled 19-cell HC-PCF; (c) Recorded output pulse duration and the corresponding output intensity.

Fig. 5
Fig. 5

Soliton self-compression: (a) Experimental and (b) theoretical evolution of the spectrum with input energy for the case of air-filled 19-cell HC-PCF; (c) Recorded output pulse duration and the corresponding output intensity.

Fig. 6
Fig. 6

Animation of the auto-correlation trace evolution with the input energy for 1.5 m long 19-cell air-filled HC-PCF (See Media 1).

Fig. 7
Fig. 7

SPM regime: (a) Experimental and (b) theoretical evolution of the spectrum with input energy for the case of He-filled 7-cell HC-PCF; (c) Recorded output pulse duration and the corresponding output intensity.

Fig. 8
Fig. 8

(a) Laser engraving using 10 m long 19-cell HC-PCF on silicon wafer, aluminum, silica glass and (b) on highly inflammable materials; (c) The ablation rate and (d) the corresponding drilling depth evolution with the fiber delivered pulse energy; (e) A comparison of the 3D mapping of the drilling hole on glass and aluminium at 280 µJ is presented.

Fig. 9
Fig. 9

Frame from the video showing glass sheet engraving from a USP laser beam directly delivered from the HC-PCF output end (See Media 2).

Tables (1)

Tables Icon

Table 1 Dispersion length, nonlinear length, self-focusing critical power and ionization threshold intensity [18] for the different fiber configurations considered. The dispersion length is taking for gas pressure of 1 bar. The nonlinear length is calculated for the case of 1 GW peak power.

Metrics