Abstract

Total internal reflection fluorescence microscopy (TIRF), in both commercial and custom-built configurations, is widely used for high signal-noise ratio imaging. The imaging depth of traditional TIRF is sensitive to the incident angle of the laser, and normally limited to around 100 nm. In our paper, using a high refractive index material and the evanescent waves of various waveguide modes, we propose a compact and tunable ultra-short decay length TIRF system, which can reach decay lengths as short as 19 nm, and demonstrate its application for imaging fluorescent dye-labeled F-actin in HeLa cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Slayter, Optical Methods in Biology (R. E. Krieger, 1976).
  2. S. Kudo, Y. Magariyama, S.-I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990).
    [CrossRef] [PubMed]
  3. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 1995).
  4. T. Wilson, Confocal Microscopy (Academic, 1990).
  5. M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
    [CrossRef] [PubMed]
  6. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [CrossRef] [PubMed]
  7. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  8. T. A. Klar, S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
    [CrossRef]
  9. B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
    [CrossRef] [PubMed]
  10. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [CrossRef] [PubMed]
  11. F. Wei, Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).
    [CrossRef] [PubMed]
  12. F. W. Rost, Fluorescence Microscopy (Cambridge University, 1995), Vol. 1–3.
  13. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
    [CrossRef] [PubMed]
  14. J. E. Hobbie, R. J. Daley, S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 33, 1225–1228 (1977).
    [PubMed]
  15. R. Pepperkok, J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).
    [CrossRef] [PubMed]
  16. J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
    [CrossRef] [PubMed]
  17. G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
    [CrossRef] [PubMed]
  18. D. Axelrod, “Total internal reflection fluorescence microscopy,” Method. Cell Biol. 89, 169–221 (2008).
    [CrossRef]
  19. D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell Biol. 89, 141–145 (1981).
    [CrossRef] [PubMed]
  20. D. Breitsprecher, A. K. Kiesewetter, J. Linkner, J. Faix, “Analysis of actin assembly by in vitro TIRF microscopy,” in Chemotaxis (Springer, 2009), pp. 401–415.
    [CrossRef]
  21. B. Lassen, M. Malmsten, “Competitive protein adsorption studied with TIRF and ellipsometry,” J. Colloid Interface Sci. 179, 470–477 (1996).
    [CrossRef]
  22. M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
    [CrossRef] [PubMed]
  23. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
    [CrossRef] [PubMed]
  24. C. M. Ajo-Franklin, L. Kam, S. G. Boxer, “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast,” Proc. Natl. Acad. Sci. U. S. A. 98, 13643–13648 (2001).
    [CrossRef] [PubMed]
  25. D. S. Johnson, J. K. Jaiswal, S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” in Current Protocols in Cytometry (John Wiley, 2012).
    [CrossRef]
  26. L. Wang, C. Vasilev, D. P. Canniffe, L. R. Wilson, C. N. Hunter, A. J. Cadby, “Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy,” Opt. Express 20, 3311–3324 (2012).
    [CrossRef] [PubMed]

2012 (1)

2010 (1)

F. Wei, Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).
[CrossRef] [PubMed]

2008 (1)

D. Axelrod, “Total internal reflection fluorescence microscopy,” Method. Cell Biol. 89, 169–221 (2008).
[CrossRef]

2007 (1)

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef] [PubMed]

2006 (2)

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

R. Pepperkok, J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).
[CrossRef] [PubMed]

2004 (1)

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

2001 (1)

C. M. Ajo-Franklin, L. Kam, S. G. Boxer, “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast,” Proc. Natl. Acad. Sci. U. S. A. 98, 13643–13648 (2001).
[CrossRef] [PubMed]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

1997 (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

1996 (1)

B. Lassen, M. Malmsten, “Competitive protein adsorption studied with TIRF and ellipsometry,” J. Colloid Interface Sci. 179, 470–477 (1996).
[CrossRef]

1995 (1)

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

1990 (1)

S. Kudo, Y. Magariyama, S.-I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990).
[CrossRef] [PubMed]

1987 (1)

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell Biol. 89, 141–145 (1981).
[CrossRef] [PubMed]

1977 (1)

J. E. Hobbie, R. J. Daley, S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 33, 1225–1228 (1977).
[PubMed]

Aizawa, S.-I.

S. Kudo, Y. Magariyama, S.-I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990).
[CrossRef] [PubMed]

Ajo-Franklin, C. M.

C. M. Ajo-Franklin, L. Kam, S. G. Boxer, “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast,” Proc. Natl. Acad. Sci. U. S. A. 98, 13643–13648 (2001).
[CrossRef] [PubMed]

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy,” Method. Cell Biol. 89, 169–221 (2008).
[CrossRef]

D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell Biol. 89, 141–145 (1981).
[CrossRef] [PubMed]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Bates, M.

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Baumeister, K.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Boxer, S. G.

C. M. Ajo-Franklin, L. Kam, S. G. Boxer, “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast,” Proc. Natl. Acad. Sci. U. S. A. 98, 13643–13648 (2001).
[CrossRef] [PubMed]

Breitsprecher, D.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, J. Faix, “Analysis of actin assembly by in vitro TIRF microscopy,” in Chemotaxis (Springer, 2009), pp. 401–415.
[CrossRef]

Cadby, A. J.

Canniffe, D. P.

Cocuzza, A. J.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Daley, R. J.

J. E. Hobbie, R. J. Daley, S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 33, 1225–1228 (1977).
[PubMed]

Dam, R. J.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef] [PubMed]

Ellenberg, J.

R. Pepperkok, J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).
[CrossRef] [PubMed]

Faix, J.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, J. Faix, “Analysis of actin assembly by in vitro TIRF microscopy,” in Chemotaxis (Springer, 2009), pp. 401–415.
[CrossRef]

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Funatsu, T.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Harada, Y.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Hell, S. W.

Hobbie, J. E.

J. E. Hobbie, R. J. Daley, S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 33, 1225–1228 (1977).
[PubMed]

Hobbs, F. W.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Huang, B.

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef] [PubMed]

Hunter, C. N.

Iwane, A. H.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

Jaiswal, J. K.

D. S. Johnson, J. K. Jaiswal, S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” in Current Protocols in Cytometry (John Wiley, 2012).
[CrossRef]

Jasper, S.

J. E. Hobbie, R. J. Daley, S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 33, 1225–1228 (1977).
[PubMed]

Jensen, M. A.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Johnson, D. S.

D. S. Johnson, J. K. Jaiswal, S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” in Current Protocols in Cytometry (John Wiley, 2012).
[CrossRef]

Kam, L.

C. M. Ajo-Franklin, L. Kam, S. G. Boxer, “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast,” Proc. Natl. Acad. Sci. U. S. A. 98, 13643–13648 (2001).
[CrossRef] [PubMed]

Kiesewetter, A. K.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, J. Faix, “Analysis of actin assembly by in vitro TIRF microscopy,” in Chemotaxis (Springer, 2009), pp. 401–415.
[CrossRef]

Kikuta, T.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

Kitamura, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

Klar, T. A.

Kudo, S.

S. Kudo, Y. Magariyama, S.-I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990).
[CrossRef] [PubMed]

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Lassen, B.

B. Lassen, M. Malmsten, “Competitive protein adsorption studied with TIRF and ellipsometry,” J. Colloid Interface Sci. 179, 470–477 (1996).
[CrossRef]

Linkner, J.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, J. Faix, “Analysis of actin assembly by in vitro TIRF microscopy,” in Chemotaxis (Springer, 2009), pp. 401–415.
[CrossRef]

Liu, Z.

F. Wei, Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).
[CrossRef] [PubMed]

Magariyama, Y.

S. Kudo, Y. Magariyama, S.-I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990).
[CrossRef] [PubMed]

Malmsten, M.

B. Lassen, M. Malmsten, “Competitive protein adsorption studied with TIRF and ellipsometry,” J. Colloid Interface Sci. 179, 470–477 (1996).
[CrossRef]

Nagai, S.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

Nagamatsu, S.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

Nakamichi, Y.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

Nishiwaki, C.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

Ohara-Imaizumi, M.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 1995).

Pepperkok, R.

R. Pepperkok, J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).
[CrossRef] [PubMed]

Prober, J. M.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Robertson, C. W.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Rost, F. W.

F. W. Rost, Fluorescence Microscopy (Cambridge University, 1995), Vol. 1–3.

Rust, M. J.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Saito, K.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Simon, S.

D. S. Johnson, J. K. Jaiswal, S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” in Current Protocols in Cytometry (John Wiley, 2012).
[CrossRef]

Slayter, E. M.

E. M. Slayter, Optical Methods in Biology (R. E. Krieger, 1976).

Star, W. M.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Tokunaga, M.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Trainor, G. L.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Vasilev, C.

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Wang, L.

Wei, F.

F. Wei, Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).
[CrossRef] [PubMed]

Wichmann, J.

Wilson, B. C.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Wilson, L. R.

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, 1990).

Yanagida, T.

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

Zagursky, R. J.

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

Zhuang, X.

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Appl. Environ. Microbiol. (1)

J. E. Hobbie, R. J. Daley, S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 33, 1225–1228 (1977).
[PubMed]

Biochem. Biophys. Res. Commun. (1)

M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
[CrossRef] [PubMed]

Biochem. J. (1)

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells,” Biochem. J. 381, 13–18 (2004).
[CrossRef] [PubMed]

J. Cell Biol. (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell Biol. 89, 141–145 (1981).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

B. Lassen, M. Malmsten, “Competitive protein adsorption studied with TIRF and ellipsometry,” J. Colloid Interface Sci. 179, 470–477 (1996).
[CrossRef]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Method. Cell Biol. (1)

D. Axelrod, “Total internal reflection fluorescence microscopy,” Method. Cell Biol. 89, 169–221 (2008).
[CrossRef]

Nano Lett. (1)

F. Wei, Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).
[CrossRef] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

R. Pepperkok, J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).
[CrossRef] [PubMed]

Nature (3)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef] [PubMed]

S. Kudo, Y. Magariyama, S.-I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Photochem. Photobiol. (1)

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

C. M. Ajo-Franklin, L. Kam, S. G. Boxer, “High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast,” Proc. Natl. Acad. Sci. U. S. A. 98, 13643–13648 (2001).
[CrossRef] [PubMed]

Science (2)

J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen, K. Baumeister, “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynu-cleotides,” Science 238, 336–341 (1987).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[CrossRef] [PubMed]

Other (6)

E. M. Slayter, Optical Methods in Biology (R. E. Krieger, 1976).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 1995).

T. Wilson, Confocal Microscopy (Academic, 1990).

F. W. Rost, Fluorescence Microscopy (Cambridge University, 1995), Vol. 1–3.

D. Breitsprecher, A. K. Kiesewetter, J. Linkner, J. Faix, “Analysis of actin assembly by in vitro TIRF microscopy,” in Chemotaxis (Springer, 2009), pp. 401–415.
[CrossRef]

D. S. Johnson, J. K. Jaiswal, S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” in Current Protocols in Cytometry (John Wiley, 2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed TIRF system. The TiO2 layer acts as a waveguide capable of supporting a variety of propagating modes, each of which have a different wavelength. The gratings are all designed to couple to different modes when illuminated with a normally incident laser.

Fig. 2
Fig. 2

A) The waveguide modes supported by different thicknesses of TiO2 on glass. The connecting lines trace the evolution of the modes as the thickness is varied. B) The intensity distribution in- and outside TiO2 layer of the three highlighted modes in Fig. 2(a). C) Intensity decay curve in the Z direction (perpendicular to the surface of the TiO2 layer). The three calculated decay lengths (defined by the distance where the power decays by a factor of e−1) are 19 nm, 25 nm and 39 nm.

Fig. 3
Fig. 3

A) A SEM image of the gold grating embedded in the glass layer. The scale bar is 300 nm. The left bottom inset figure shows the schematic of the grating cross-section. B) Cross-section intensities of a fluorescent nanoparticle (40 nm diameter), illuminated by evanescent waves with decay lengths of 39 nm, 25 nm and 19 nm. The experimental images are shown on the right respectively, from top to bottom. The dots display the experimental results, with the solid line showing the simulation fitting. The whole cross-section (red line) is 4160 nm.

Fig. 4
Fig. 4

Images of rhodamine phalloidan stained F-actin in HeLa cells cultured on the TiO2 substrate. A) Direct LED illumination. B), C) and D) Evanescent wave illumination, with decay lengths of 19 nm, 25 nm and 39 nm respectively. The scale bar is 4 μm.

Metrics