Abstract

A transparent reconfigurable optical add-drop multiplexer (ROADM) module composed of AWG-based wavelength-channel-selectors monolithically integrated with Mach-Zehnder interferometer (MZI) thermo-optic (TO) waveguide switch arrays and arrayed waveguide true-time-delay (TTD) lines is designed and fabricated using polymer photonic lightwave circuit technology. Negative-type fluorinated photoresist and grafting modified organic-inorganic hybrid materials were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 ps to 20 ps. Proposed novel ROADM is flexible and scalable for the dense wavelength division multiplexing network.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo, T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” J. Lightwave Technol. 29(18), 2780–2784 (2011).
    [CrossRef]
  2. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
    [CrossRef]
  3. C. M. Tsai, Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
    [CrossRef]
  4. J. S. Cho, Y. K. Seo, H. Yoo, P. K. J. Park, J. K. Rhee, Y. H. Won, M. H. Kang, “Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks,” Opt. Express 15(20), 13256–13265 (2007).
    [CrossRef] [PubMed]
  5. V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
    [CrossRef]
  6. Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
    [CrossRef]
  7. T. Claes, W. Bogaerts, P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
    [CrossRef] [PubMed]
  8. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
    [CrossRef]
  9. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
    [CrossRef] [PubMed]
  10. Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
    [CrossRef]
  11. A. Yeniay, R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
    [CrossRef]
  12. M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
    [CrossRef]
  13. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
    [CrossRef] [PubMed]
  14. D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
    [CrossRef]
  15. F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
    [CrossRef]
  16. N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
    [CrossRef] [PubMed]
  17. N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
    [CrossRef]
  18. F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
    [CrossRef]
  19. S. C. Nicholes, M. L. Masanovic, B. Jevremović, E. Lively, L. A. Coldren, D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
    [CrossRef]
  20. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).
  21. J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
    [CrossRef]
  22. R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
    [CrossRef]
  23. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
    [CrossRef]
  24. T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
    [CrossRef]
  25. C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
    [CrossRef]
  26. L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [CrossRef] [PubMed]
  27. C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
    [CrossRef]
  28. J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
    [CrossRef]
  29. C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
    [CrossRef]
  30. G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
    [CrossRef]
  31. Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
    [CrossRef]
  32. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
    [CrossRef]
  33. K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).
  34. Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
    [CrossRef]
  35. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
    [CrossRef]
  36. B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
    [CrossRef]
  37. X. Wang, B. Howley, M. Y. Chen, R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
    [CrossRef] [PubMed]

2014 (1)

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

2013 (4)

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[CrossRef]

N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[CrossRef] [PubMed]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

2012 (5)

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[CrossRef]

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

2011 (5)

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

T. Claes, W. Bogaerts, P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
[CrossRef] [PubMed]

C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo, T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” J. Lightwave Technol. 29(18), 2780–2784 (2011).
[CrossRef]

2010 (7)

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
[CrossRef] [PubMed]

A. Yeniay, R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[CrossRef]

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
[CrossRef] [PubMed]

S. C. Nicholes, M. L. Masanovic, B. Jevremović, E. Lively, L. A. Coldren, D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
[CrossRef]

L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef] [PubMed]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

2009 (6)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[CrossRef]

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

2007 (5)

C. M. Tsai, Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[CrossRef]

J. S. Cho, Y. K. Seo, H. Yoo, P. K. J. Park, J. K. Rhee, Y. H. Won, M. H. Kang, “Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks,” Opt. Express 15(20), 13256–13265 (2007).
[CrossRef] [PubMed]

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

X. Wang, B. Howley, M. Y. Chen, R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[CrossRef] [PubMed]

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

2005 (1)

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

2004 (1)

J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[CrossRef]

2001 (1)

V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[CrossRef]

Andriolli, N.

F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[CrossRef]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[CrossRef] [PubMed]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Back, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Baek, Y.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef] [PubMed]

Bamiedakis, N.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Bauter, J.

D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[CrossRef]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Bienstman, P.

Blumenthal, D. J.

Bogaerts, W.

Bogoni, A.

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Bolk, J.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Bontempi, F.

N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[CrossRef] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[CrossRef]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Bowers, J. E.

D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[CrossRef]

Chen, C.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

Chen, M. Y.

Chen, R. T.

X. Wang, B. Howley, M. Y. Chen, R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[CrossRef] [PubMed]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Chen, Y.

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Cho, J. S.

Claes, T.

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Coldren, L. A.

Contestabile, G.

N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[CrossRef] [PubMed]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[CrossRef]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Cui, Y.

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

Cui, Z.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Dai, D.

D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[CrossRef]

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef] [PubMed]

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Dentai, A. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Dereux, A.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Dominic, V. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Evans, P. W.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Fang, Q.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Faralli, S.

F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[CrossRef]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

N. Andriolli, S. Faralli, F. Bontempi, G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[CrossRef] [PubMed]

Fei, X.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Gao, R.

A. Yeniay, R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[CrossRef]

Gorman, T.

T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[CrossRef]

Grote, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Grubb, S. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Han, C.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

Han, S.-P.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Han, Y.-T.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Hashimoto, T.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Hassan, K.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Haxha, S.

T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[CrossRef]

He, Z.

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

Howley, B.

X. Wang, B. Howley, M. Y. Chen, R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[CrossRef] [PubMed]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Hu, G.

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

Hu, J.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Hurtt, S. K.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Hwang, W.-Y.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

Itoh, M.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Jevremovic, B.

Jiang, Y.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Joyner, C. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Ju, J. J.

T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[CrossRef]

Kakitsuka, T.

Kamei, S.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Kang, M. H.

Kang-hee, P.

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Kato, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Kauffman, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Kawaguchi, Y.

Keil, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Kim, B.-G.

J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[CrossRef]

Kish, F. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Kitoh, T.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Kondo, Y.

Kriezis, E. E.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Kroh, M.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Kwong, D.-L.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Lambert, D. J. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Lee, B.-S.

J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[CrossRef]

Lee, C.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Lee, H.-J.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Leijtens, X. J. M.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Li, R.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

Liang, T.-C.

Liu, L.

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

Liu, Y.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Lively, E.

Lo, G.-Q.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Lo, Y. L.

C. M. Tsai, Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[CrossRef]

Lo, Y.-L.

Lu, C.

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

Markey, L.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Masanovic, M. L.

Mathur, A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Matiss, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Matsuo, S.

Mehuys, D. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Melle, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Missey, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Mitchell, M. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Murthy, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Nagarajan, R.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Nicholes, S. C.

Nilsson, A. C.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Noh, Y.-O.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Oguma, M.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Park, H.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Park, P. K. J.

Park, S.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Penty, R. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Perkins, D.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Pinna, S.

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

Pitilakis, A.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Pleumeekers, J. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Reffle, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Rhee, J. K.

Richter, T.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Sakamaki, Y.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Salvatore, R. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Sato, T.

Schneider, R. P.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Schubert, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Segawa, T.

Seo, J.-K.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

Seo, Y. K.

Shi, Z.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Shibata, Y.

Shin, J.-D.

J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[CrossRef]

Shin, J.-U.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Song, J.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Song, K.

V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[CrossRef]

Steffan, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef] [PubMed]

Sun, X.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

Taga, H.

Takahashi, H.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

Takahashi, R.

Theurer, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Tran, V.

V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[CrossRef]

Tsai, C. M.

C. M. Tsai, Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[CrossRef]

Tsai, C.-M.

Tsilipakos, O.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Tucker, R. S.

V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[CrossRef]

Van Leeuwen, M. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Wan, Y.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Wang, F.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

Wang, H.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

Wang, J.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Wang, L.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

Wang, X.

X. Wang, B. Howley, M. Y. Chen, R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[CrossRef] [PubMed]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Wang, Z.

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

Webjorn, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Weeber, J.-C.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Welch, D. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

White, I. H.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Won, Y. H.

Wu, X.

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

Xu, L.

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

Yan, Y.

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

Yang, C.-H.

Yeniay, A.

A. Yeniay, R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[CrossRef]

Yi, Y.

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

Yoo, H.

Yu, M.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Yu, Y.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

Yun, B.

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

Zawadzki, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Zhang, D.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

Zhang, F.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

Zhang, G.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

Zhang, H.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

Zhang, T.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

Zhang, X.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Zhang, Y.

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

Zhang, Z.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

Zhao, L.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Zhong, W. D.

V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[CrossRef]

Zhou, Q.

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Ziari, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[CrossRef]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef] [PubMed]

ETRI (1)

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[CrossRef]

IEEE J. Lightw. Technol (2)

T. Gorman, S. Haxha, J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[CrossRef]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[CrossRef]

IEEE J. Quantum Electron. (6)

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[CrossRef]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[CrossRef]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[CrossRef]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[CrossRef]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[CrossRef]

IEEE J. Select Top Quantum Electron. (1)

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

IEEE Photon. Technol. Lett. (8)

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[CrossRef]

J.-D. Shin, B.-S. Lee, B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[CrossRef]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

V. Tran, W. D. Zhong, R. S. Tucker, K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[CrossRef]

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[CrossRef]

A. Yeniay, R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[CrossRef]

IEICE Electron. Express (1)

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

Y. Zhang, X. Wu, Z. He, L. Liu, L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[CrossRef]

J. Polym. Sci. A Polym. Chem. (1)

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[CrossRef]

Light: Science and Applications (1)

D. Dai, J. Bauter, J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[CrossRef]

Opt. Commun. (1)

G. Hu, Y. Cui, B. Yun, C. Lu, Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

C. M. Tsai, Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[CrossRef]

Opt. Lett. (1)

Photon. Technol. Lett (1)

F. Bontempi, S. Faralli, N. Andriolli, G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[CrossRef]

Sens. Actuators A Phys. (1)

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[CrossRef]

Other (1)

K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The schematic diagram of the integrated chip (a) operating principle and schematic configuration of the integrated ROADM module; (b) description structure of shifts of focal point for AWG-based wavelength selector.

Fig. 2
Fig. 2

Relations between the core thickness b and the effective refractive indices nc (green dashed lines) and ns (blue solid lines) with a = b.

Fig. 3
Fig. 3

Output spectral of transmitted signal lights for each channel.

Fig. 4
Fig. 4

Simulated output wavelength-channel-selected characteristics of the integrated module with temperature changing from 20 °C to 65 °C.

Fig. 5
Fig. 5

Simulated spectral of through signal lights without/with 1.5-V dc bias.

Fig. 6
Fig. 6

Fabrication process for UV defined waveguide and electrode heater structure.

Fig. 7
Fig. 7

Profiles of the waveguide and electrode structures: SEM photograph of (a) input and (b) transmission segment patterns of cross-sectional waveguides; the surface profiles of (a) serpentine and (b) switch-arrayed electrode heaters. ( × 500)

Fig. 8
Fig. 8

(a) Schematic photographs of the proposed polymer 16-channel integrated module measured. (b) Near-field guide-mode patterns of the device with signal light from a wide-band EDFA.

Fig. 9
Fig. 9

(a) Output spectral of through signal light measured from the eighth channel; (b) actual effect of wavelength-channel-selected characteristic for the integrated device at dc voltage of the serpentine heaters.

Fig. 10
Fig. 10

Performances of the integrated device. (a) TO switch responses obtained by applying square-wave voltage at frequency of 100 Hz. (b) Actual channel output versus power consumption of optical switch at 1550 nm for TM mode.

Tables (1)

Tables Icon

Table 1 The Delay Increments for Each Element (Unit: ps)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δt= 2πΔR n g c
Δϕ2πm 2π n s d/λ =θ
Δϕ= 2π λ ( n c ΔL+jΔ n c Δ L e )
jΔx jΔ n c = fΔL n s d
T(x,y)= P π K h LW tan h 1 [ sinh( πy 2 L s ) cosh( πτ 2 L s ) ]dτ

Metrics