Abstract

A low-loss high-speed silicon in-phase (I) quadrature (Q) modulator is designed, fabricated and characterized. The fabricated IQ modulator has a low passive optical loss of 9 dB in C and L bands. Using the modulator, differential quadrature phase-shift keying (DQPSK) transmission at 44.6 Gb/s with differential detection is confirmed with an optical signal-to-noise ratio (OSNR) of 16.3 dB for a bit error rate (BER) of 10−3 and a dispersion tolerance of −96 to 107 ps/nm. Moreover, in digital coherent detection, quadrature phase-shift keying (QPSK) up to 64 Gb/s are achieved with an OSNR of 11.6–11.8 dB for a BER of 10−2 at 1530, 1550, and 1610 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [CrossRef]
  3. P. Dong, L. Chen, Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [CrossRef] [PubMed]
  4. D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
    [CrossRef]
  5. S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Noguchi, E. Saito, Y. Noguchi, and N. Hirayama, “50-Gb/s silicon modulator using 250-μm-long phase shifter based-on forward-biased pin diodes,” in Proceedings of 9th International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, San Diego, 2012), 192–194.
    [CrossRef]
  6. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
    [CrossRef] [PubMed]
  7. X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
    [CrossRef] [PubMed]
  8. K. Ogawa, K. Goi, H. Kusaka, K. Oda, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “20-Gbps silicon photonic waveguide nested Mach-Zehnder QPSK modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Los Angeles, 2012), paper JTh2A.20.
    [CrossRef]
  9. P. Dong, L. Chen, C. Xie, L. L. Buhl, Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
    [CrossRef] [PubMed]
  10. P. Dong, C. Xie, L. Chen, L. L. Buhl, Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
    [CrossRef] [PubMed]
  11. B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112Gb/s DP-QPSK transmission over 2427km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Anaheim, 2013), paper OTh1D.1.
    [CrossRef]
  12. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “Monolithic silicon photonic circuits enable 112-Gb/s PDM-QPSK transmission over 2560-km SSMF,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (Institution of Engineering and Technology, London, 2013), paper We.2.B.1.
    [CrossRef]
  13. P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Anaheim, 2013), paper OW4J.2.
    [CrossRef]
  14. D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
    [CrossRef] [PubMed]
  15. Y. Miyata, W. Matsumoto, K. Onohara, T. Sugihara, and K. Kubo, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, San Diego, 2010), paper OThL3.
    [CrossRef]
  16. K. Goi, H. Kusaka, A. Oka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “DQPSK/QPSK modulation at 40-60 Gb/s using low-loss nested silicon Mach-Zehnder modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Anaheim, 2013), paper OW4J.4.
    [CrossRef]
  17. X. Tu, T.-Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
    [CrossRef] [PubMed]
  18. ITU-T Recommendation, G-Series Supplement 43 (2011).
  19. ITU-T Recommendation, G-Series 975.1 (2004).
  20. P. J. Winzer, R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  21. E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  22. E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, K. Onohara, “Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express 19(14), 13179–13184 (2011).
    [CrossRef] [PubMed]
  23. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]

2013 (3)

2012 (4)

2011 (2)

2010 (1)

2008 (1)

2006 (1)

2005 (1)

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Abe, J.

Absil, P.

Alic, N.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Alloatti, L.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Baets, R.

Baier, M.

Barros, D. J. F.

Bogaerts, W.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Buhl, L. L.

Chen, B.

Chen, L.

Chen, Y.-K.

Chu, T.

Dinu, R.

Dong, P.

Essiambre, R. J.

Essiambre, R.-J.

Fang, Q.

Fedeli, J.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Foschini, G. J.

Freude, W.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Fukuchi, K.

Fukumitsu, K.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Gnauck, A. H.

Goebel, B.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Hirano, S.

Hu, Y.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Ip, E.

Kahn, J. M.

Kisaka, Y.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Komaki, K.

Koos, C.

Korn, D.

Kramer, G.

Kubo, K.

Kuo, P.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Lau, A. P. T.

Lepage, G.

Leuthold, J.

Li, X.

Li, Z.

Liow, T.-Y.

Lo, G. Q.

Lo, G.-Q.

Luo, X.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Matsui, J.

Matsuoka, S.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Miyamoto, Y.

Miyata, Y.

Mizuochi, T.

Murata, K.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Nakagawa, T.

Nakamura, Y.

Nakashima, H.

Nishimoto, H.

Noguchi, H.

Onaka, H.

Onohara, K.

Palmer, R.

Pantouvaki, M.

Ping, B.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Radic, S.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Sakamoto, Y.

Sakano, T.

Schindler, P. C.

Schmogrow, R.

Selvaraja, S. K.

Shibayama, A.

Song, J.

Takeuchi, O.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Tomizawa, M.

Tu, X.

Van Campenhout, J.

Verheyen, P.

Winzer, P. J.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Wouters, J. M. D.

Xiao, X.

Xie, C.

Xu, H.

Yamanaka, S.

Yamazaki, E.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Yoshida, E.

Yu, H.

Yu, J.

Yu, M.

Yu, Y.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Ping, P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (9)

E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, K. Onohara, “Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express 19(14), 13179–13184 (2011).
[CrossRef] [PubMed]

X. Tu, T.-Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[CrossRef] [PubMed]

P. Dong, L. Chen, Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
[CrossRef] [PubMed]

P. Dong, L. Chen, C. Xie, L. L. Buhl, Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
[CrossRef] [PubMed]

P. Dong, C. Xie, L. Chen, L. L. Buhl, Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[CrossRef] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
[CrossRef] [PubMed]

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[CrossRef] [PubMed]

D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
[CrossRef] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[CrossRef] [PubMed]

Other (9)

S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Noguchi, E. Saito, Y. Noguchi, and N. Hirayama, “50-Gb/s silicon modulator using 250-μm-long phase shifter based-on forward-biased pin diodes,” in Proceedings of 9th International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, San Diego, 2012), 192–194.
[CrossRef]

K. Ogawa, K. Goi, H. Kusaka, K. Oda, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “20-Gbps silicon photonic waveguide nested Mach-Zehnder QPSK modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Los Angeles, 2012), paper JTh2A.20.
[CrossRef]

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112Gb/s DP-QPSK transmission over 2427km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Anaheim, 2013), paper OTh1D.1.
[CrossRef]

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “Monolithic silicon photonic circuits enable 112-Gb/s PDM-QPSK transmission over 2560-km SSMF,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (Institution of Engineering and Technology, London, 2013), paper We.2.B.1.
[CrossRef]

P. Dong, C. Xie, L. L. Buhl, and Y.-K. Chen, “Silicon microring modulators for advanced modulation formats,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Anaheim, 2013), paper OW4J.2.
[CrossRef]

ITU-T Recommendation, G-Series Supplement 43 (2011).

ITU-T Recommendation, G-Series 975.1 (2004).

Y. Miyata, W. Matsumoto, K. Onohara, T. Sugihara, and K. Kubo, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, San Diego, 2010), paper OThL3.
[CrossRef]

K. Goi, H. Kusaka, A. Oka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, and D.-L. Kwong, “DQPSK/QPSK modulation at 40-60 Gb/s using low-loss nested silicon Mach-Zehnder modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, Anaheim, 2013), paper OW4J.4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top view photograph of the silicon IQ modulator and schematic of optical waveguides.

Fig. 2
Fig. 2

(a) PN junction with dopant compensated region and (b) its characteristics as a phase shifter simulated under the following conditions: Doping density of each p and n region (NA and ND) is uniform and equal to one another; an abrupt junction and 8 Vpp driving voltage with DC reverse bias of 5 V are assumed.

Fig. 3
Fig. 3

(a) phase shift and phase shifter (WG) loss versus DC reverse bias, and (b) E/O response under DC reverse bias.

Fig. 4
Fig. 4

Measurement setup for DQPSK transmission with the silicon IQ modulator and a receiver for differential detection.

Fig. 5
Fig. 5

(a) BER for the 22.3G DQPSK and (b) path power penalty.

Fig. 6
Fig. 6

QPSK measurement setup.

Fig. 7
Fig. 7

QPSK modulation results at 64 Gb/s: (a) constellation diagrams at different LD wavelengths, (b) a constellation diagram and spectrum with a FIR digital filter, and (c) BERs with and without the filter.

Metrics