Abstract

Nanoparticles of high refractive index materials can possess strong magnetic polarizabilities and give rise to artificial magnetism in the optical spectral range. While the response of individual dielectric or metal spherical particles can be described analytically via multipole decomposition in the Mie series, the influence of substrates, in many cases present in experimental observations, requires different approaches. Here, the comprehensive numerical studies of the influence of a substrate on the spectral response of high-index dielectric nanoparticles were performed. In particular, glass, perfect electric conductor, gold, and hyperbolic metamaterial substrates were investigated. Optical properties of nanoparticles were characterized via scattering cross-section spectra, electric field profiles, and induced electric and magnetic moments. The presence of substrates was shown to have significant impact on particle’s magnetic resonances and resonant scattering cross-sections. Variation of substrate material provides an additional degree of freedom in tailoring optical properties of magnetic multipoles, important in many applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Polydoroff, W. Polydoroff, High-Frequency Magnetic Materials: Their Characteristics and Principal Applications, (Wiley, 1960).
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  3. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
    [CrossRef] [PubMed]
  4. C. M. Soukoulis, M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 16011 (2010).
    [CrossRef]
  5. A. Boltasseva, H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [CrossRef] [PubMed]
  6. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
    [CrossRef]
  7. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
    [CrossRef] [PubMed]
  8. P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
    [CrossRef]
  9. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef] [PubMed]
  10. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005).
    [CrossRef]
  11. S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
    [CrossRef]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
    [CrossRef] [PubMed]
  13. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [CrossRef]
  14. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [CrossRef] [PubMed]
  15. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [CrossRef] [PubMed]
  16. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [CrossRef] [PubMed]
  17. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [CrossRef] [PubMed]
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 1998).
    [CrossRef]
  19. P. Hammond, “Electric and magnetic images,” Proc. IEE 107C, 306–313 (1960).
  20. J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
    [CrossRef] [PubMed]
  21. N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).
  22. F. Moreno, J. M. Saiz, F. Gonzlez, “Light scattering by particles on substrates. Theory and experiments,” in Light Scattering and Nanoscale Surface Roughness Nanostructure Science and Technology, A. A. Maradudin, ed. (Springer, 2007), pp. 305–340.
    [CrossRef]
  23. J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
    [CrossRef]
  24. P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. A 137, 243–257 (1986)
    [CrossRef]
  25. I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).
  26. A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).
  27. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, 2005).
  28. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  29. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379, (1972).
    [CrossRef]
  30. M. Albooyeh, C. R. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13105102 (2011).
    [CrossRef]
  31. V. Klimov, S. Shulin, G.-Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20, 13081 (2012).
    [CrossRef]
  32. G.-Y. Guo, V. Klimov, S. Shulin, W.-J. Zheng, “Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources,” Opt. Express 21, 11338–11348 (2013).
    [CrossRef] [PubMed]
  33. P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
    [CrossRef] [PubMed]
  34. P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
    [CrossRef] [PubMed]
  35. A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
    [CrossRef]
  36. Ya. B. Fainberg, N. A. Khizhnyak, “Artificial anisotropic media,” JETP 25, 711 (1955).
  37. A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
    [CrossRef]
  38. A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
    [CrossRef]

2014 (1)

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

2013 (4)

A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
[CrossRef]

G.-Y. Guo, V. Klimov, S. Shulin, W.-J. Zheng, “Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources,” Opt. Express 21, 11338–11348 (2013).
[CrossRef] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

2012 (7)

V. Klimov, S. Shulin, G.-Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20, 13081 (2012).
[CrossRef]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[CrossRef] [PubMed]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).

2011 (4)

A. Boltasseva, H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef] [PubMed]

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

M. Albooyeh, C. R. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13105102 (2011).
[CrossRef]

2010 (4)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef] [PubMed]

C. M. Soukoulis, M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 16011 (2010).
[CrossRef]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

2007 (2)

2005 (1)

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005).
[CrossRef]

2004 (1)

I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).

2002 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

1999 (1)

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

1986 (1)

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. A 137, 243–257 (1986)
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379, (1972).
[CrossRef]

1960 (1)

P. Hammond, “Electric and magnetic images,” Proc. IEE 107C, 306–313 (1960).

1955 (1)

Ya. B. Fainberg, N. A. Khizhnyak, “Artificial anisotropic media,” JETP 25, 711 (1955).

Albooyeh, M.

M. Albooyeh, C. R. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13105102 (2011).
[CrossRef]

Amir, N.

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

A. Boltasseva, H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Bao, J.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Bao, K.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Belov, P. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
[CrossRef]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[CrossRef] [PubMed]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

Berkovitch, N.

N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Bobbert, P. A.

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. A 137, 243–257 (1986)
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 1998).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[CrossRef] [PubMed]

Capasso, F.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Chebykin, A. V.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379, (1972).
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

de la Pena, J. L.

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[CrossRef] [PubMed]

Fainberg, Ya. B.

Ya. B. Fainberg, N. A. Khizhnyak, “Artificial anisotropic media,” JETP 25, 711 (1955).

Fan, J. A.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

Ginzburg, P.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Gonzales, F.

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

Gonzlez, F.

F. Moreno, J. M. Saiz, F. Gonzlez, “Light scattering by particles on substrates. Theory and experiments,” in Light Scattering and Nanoscale Surface Roughness Nanostructure Science and Technology, A. A. Maradudin, ed. (Springer, 2007), pp. 305–340.
[CrossRef]

Guo, G.-Y.

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, 2005).

Halas, N. J.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

Hammond, P.

P. Hammond, “Electric and magnetic images,” Proc. IEE 107C, 306–313 (1960).

Hanninen, J. J.

I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 1998).
[CrossRef]

Iorsh, I.

A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379, (1972).
[CrossRef]

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

Khizhnyak, N. A.

Ya. B. Fainberg, N. A. Khizhnyak, “Artificial anisotropic media,” JETP 25, 711 (1955).

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Kivshar, Yu. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
[CrossRef]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[CrossRef] [PubMed]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

Klimov, V.

Krasavin, A. V.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

Krasnok, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[CrossRef] [PubMed]

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

Lassiter, J. B.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Lerman, G.

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Levy, U.

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Lindell, I. V.

I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

Lukyanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005).
[CrossRef]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[CrossRef] [PubMed]

Moreno, F.

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

F. Moreno, J. M. Saiz, F. Gonzlez, “Light scattering by particles on substrates. Theory and experiments,” in Light Scattering and Nanoscale Surface Roughness Nanostructure Science and Technology, A. A. Maradudin, ed. (Springer, 2007), pp. 305–340.
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Nikoskinen, K. I.

I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).

Nordlander, P.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

Normatov, A.

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Orenstein, M.

N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Orlov, A. A.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Poddubny, A. N.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
[CrossRef]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

Polydoroff, W.

W. J. Polydoroff, W. Polydoroff, High-Frequency Magnetic Materials: Their Characteristics and Principal Applications, (Wiley, 1960).

Polydoroff, W. J.

W. J. Polydoroff, W. Polydoroff, High-Frequency Magnetic Materials: Their Characteristics and Principal Applications, (Wiley, 1960).

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Radko, I. P.

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Rodrguez-Fortuo, F. J.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

Saiz, J. M.

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

F. Moreno, J. M. Saiz, F. Gonzlez, “Light scattering by particles on substrates. Theory and experiments,” in Light Scattering and Nanoscale Surface Roughness Nanostructure Science and Technology, A. A. Maradudin, ed. (Springer, 2007), pp. 305–340.
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[CrossRef]

Shulin, S.

Simovski, C. R.

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

M. Albooyeh, C. R. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13105102 (2011).
[CrossRef]

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

Slobozhanyuk, A. P.

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 16011 (2010).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, 2005).

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Valle, P. J.

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Vlieger, J.

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. A 137, 243–257 (1986)
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Wegener, M.

C. M. Soukoulis, M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 16011 (2010).
[CrossRef]

Wurtz, G. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

Yanai, A.

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

Zayats, A. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005).
[CrossRef]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef] [PubMed]

Zheng, W.-J.

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

IEE Proceedings (1)

I. V. Lindell, J. J. Hanninen, K. I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary,” IEE Proceedings, 151, 188–194 (2004).

J. Appl. Phys. (1)

J. L. de la Pena, F. Gonzales, J. M. Saiz, P. J. Valle, F. Moreno, “Sizing particles on substrates: a general method foe oblique incidence,” J. Appl. Phys. 85, 432–438 (1999)
[CrossRef]

J. Opt. (1)

M. Albooyeh, C. R. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13105102 (2011).
[CrossRef]

J. Phys.: Condens. Matter (1)

N. Berkovitch, P. Ginzburg, M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter 24, 073202 (2012).

JETP (1)

Ya. B. Fainberg, N. A. Khizhnyak, “Artificial anisotropic media,” JETP 25, 711 (1955).

Nano Lett. (3)

P. Ginzburg, N. Amir, N. Berkovitch, A. Normatov, G. Lerman, A. Yanai, U. Levy, M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nano-antennas,” Nano Lett. 11, 220–224 (2011).
[CrossRef]

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821, (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Nat. Commun. (2)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[CrossRef] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodrguez-Fortuo, D. S. Filonov, P. A. Belov, A. N. Poddubny, Yu. S. Kivshar, G. A. Wurtz, A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[CrossRef] [PubMed]

Nat. Photon. (1)

A. N. Poddubny, I. Iorsh, P. A. Belov, Yu. S. Kivshar, “Hyperbolic metamaterials,” Nat. Photon. 7, 1038 (2013).
[CrossRef]

Nature Materials (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442–453 (2008).
[CrossRef] [PubMed]

Nature Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[CrossRef]

Opt. Express (4)

Phys. A (1)

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. A 137, 243–257 (1986)
[CrossRef]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005).
[CrossRef]

Phys. Rev. B (4)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379, (1972).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Yu. S. Kivshar, A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Proc. IEE (1)

P. Hammond, “Electric and magnetic images,” Proc. IEE 107C, 306–313 (1960).

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef] [PubMed]

Science (4)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef] [PubMed]

C. M. Soukoulis, M. Wegener, “Optical metamaterials — more bulky and less lossy,” Science 330, 16011 (2010).
[CrossRef]

A. Boltasseva, H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Other (6)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 1998).
[CrossRef]

F. Moreno, J. M. Saiz, F. Gonzlez, “Light scattering by particles on substrates. Theory and experiments,” in Light Scattering and Nanoscale Surface Roughness Nanostructure Science and Technology, A. A. Maradudin, ed. (Springer, 2007), pp. 305–340.
[CrossRef]

W. J. Polydoroff, W. Polydoroff, High-Frequency Magnetic Materials: Their Characteristics and Principal Applications, (Wiley, 1960).

A. E. Krasnok, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, C. R. Simovski, Yu. S. Kivshar, “Superdirective magnetic nanoantennas with effect of light steering: theory and experiment,” IMOC, 1–3, (2013).

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, 2005).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dielectric nanoparticle on a substrate illuminated with a plane wave. The regions inside and outside the box depict total (incident and scattered) electric field (TF) and scattered electric field (SF), respectively.

Fig. 2
Fig. 2

Optical properties of a dielectric (εparticle = 20) nanoparticle of 70 nm radius in free space: (a) scattering cross-section spectra, (b) summary of resonant wavelengths, scattering cross-section normalised to geometric cross-section, and electric py and magnetic mz moments, (c–e) spatial distribution of the electric field amplitudes at the resonant wavelengths (normalised to the incident field).

Fig. 3
Fig. 3

Optical properties of a dielectric nanoparticle (εparticle = 20) of 70 nm radius on a dielectric substrate (εdielectric = 3.1): (a) scattering cross-section spectra, (b) summary of resonant wavelengths, scattering cross-section normalised to geometric cross-section, and electric py and magnetic mz moments, (c–e) spatial distribution of the electric field amplitudes at the resonant wavelengths (normalised to the incident field).

Fig. 4
Fig. 4

Optical properties of a dielectric nanoparticle (εparticle = 20) of 70 nm radius on a PEC substrate (εPEC = 1 + 1e6i): (a) scattering cross-section spectra, (b) summary of resonant wavelengths, scattering cross-section normalised to geometric cross-section, and electric py and magnetic mz moments, (c–e) spatial distribution of the electric field amplitudes at the resonant wavelengths (normalised to the incident field).

Fig. 5
Fig. 5

Optical properties of a dielectric nanoparticle (εparticle = 20) of 70 nm radius on a gold substrate (inset in (a) shows εgold taken from [29]): (a) scattering cross-section spectra, (b) summary of resonant wavelengths, scattering cross-section normalised to geometric cross-section, and electric py and magnetic mz moments, (c–e) spatial distribution of the electric field amplitudes at the resonant wavelengths (normalised to the incident field).

Fig. 6
Fig. 6

Optical properties of a dielectric nanoparticle (εparticle = 20) of 70 nm radius on (a,c,e,g,i) a metal-dielectric multilayered substrate (εdielectric = 3.1, see the inset in (a) for εsilver) and (b,d,f,h,j) on an effective homogeneous medium with the effective permittivity as in inset in (b): (a,b) scattering cross-section spectra, (c,d) summary of resonant wavelengths, scattering cross-section normalised to geometric cross-section, and electric py and magnetic mz moments, (e–j) spatial distribution of the electric field amplitudes at the resonant wavelengths (normalised to the incident field).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p = ε 0 V sphere ( ε ( r , ω ) 1 ) E ( r , ω ) d V , m = i ω ε 0 2 V sphere ( ε ( r , ω ) 1 ) E ( r , ω ) × r d V ,
ε x x = ε d ε m ( 1 ρ ) ε d + ρ ε m , ε y y = ε z z = ρ ε d + ( 1 ρ ) ε m ,

Metrics