Abstract

In this paper, we demonstrate that spoof surface magnon polaritons (SSMPs) can propagate along a corrugated perfect magnetic conductor (PMC) surface. From duality theorem, the existence of surface electromagnetic modes on corrugated PMC surfaces are manifest to be transverse electric (TE) mode compared with the transverse magnetic (TM) mode of spoof surface plasmon plaritons (SSPPs) excited on corrugated perfect electric conductor surfaces. Theoretical deduction through modal expansion method and simulation results clearly verify that SSMPs share the same dispersion relationship with the SSPPs. It is worth noting that this metamaterial will have more similar properties and potential applications as the SSPPs in large number of areas.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  3. T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [CrossRef]
  4. P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
    [CrossRef] [PubMed]
  5. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  6. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  7. A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
    [CrossRef] [PubMed]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
    [CrossRef]
  9. S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  10. A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
    [CrossRef]
  11. T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
    [CrossRef]
  12. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
    [CrossRef] [PubMed]
  13. Y. J. Zhou, Q. Jiang, T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
    [CrossRef]
  14. T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
    [CrossRef]
  15. X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
    [CrossRef]
  16. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).
  17. X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
    [CrossRef]
  18. X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
    [CrossRef]
  19. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
    [CrossRef]
  20. M. G. Cottam, D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
    [CrossRef]
  21. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
    [CrossRef]
  22. A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
    [CrossRef]
  23. V. H. Arakelian, L. A. Bagdassarian, S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
    [CrossRef]
  24. J. Matsuura, M. Fukui, O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
    [CrossRef]
  25. M. Marchand, A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
    [CrossRef]
  26. C. Shu, A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
    [CrossRef]
  27. C. Thibaudeau, A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
    [CrossRef]
  28. J. Takahara, T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
    [CrossRef]
  29. Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).
  30. C. H. RaymondOoi, K. C. Low, Ryota Higa, Tetsuo Ogawa, “Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors” J. Opt. Soc. Am. B 29, 2691–2697 (2012).
    [CrossRef]

2013 (4)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[CrossRef]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

2012 (2)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

C. H. RaymondOoi, K. C. Low, Ryota Higa, Tetsuo Ogawa, “Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors” J. Opt. Soc. Am. B 29, 2691–2697 (2012).
[CrossRef]

2011 (2)

Y. J. Zhou, Q. Jiang, T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[CrossRef]

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

2010 (2)

2009 (3)

P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
[CrossRef]

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[CrossRef]

2008 (1)

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

2006 (1)

S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

2005 (2)

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

2004 (2)

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

J. Takahara, T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[CrossRef]

1997 (1)

V. H. Arakelian, L. A. Bagdassarian, S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

1993 (1)

C. Thibaudeau, A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

1983 (1)

J. Matsuura, M. Fukui, O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

1982 (1)

C. Shu, A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

1980 (1)

M. Marchand, A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

1973 (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

Andrews, S.

S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Arakelian, V. H.

V. H. Arakelian, L. A. Bagdassarian, S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

Bagdassarian, L. A.

V. H. Arakelian, L. A. Bagdassarian, S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Bozhvolnyi, Sergey

Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).

Brewer, R.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

Burstein, E.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

Caill, A.

M. Marchand, A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

Caillé, A.

C. Thibaudeau, A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

C. Shu, A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

Cottam, M. G.

M. G. Cottam, D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[CrossRef]

Cui, T. J.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[CrossRef]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

Y. J. Zhou, Q. Jiang, T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

Fernández-Domínguezf, A. I.

Fukui, M.

J. Matsuura, M. Fukui, O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

Gao, X.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[CrossRef]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
[CrossRef] [PubMed]

A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F.

S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Hartstein, A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[CrossRef] [PubMed]

Higa, Ryota

Jiang, Q.

Y. J. Zhou, Q. Jiang, T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[CrossRef]

Jiang, T.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[CrossRef]

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

Kobayashi, T.

J. Takahara, T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

Li, L. M.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Low, K. C.

Ma, H. F.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

Maier, S.

S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Maradudin, A. A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

Marchand, M.

M. Marchand, A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[CrossRef]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
[CrossRef] [PubMed]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
[CrossRef] [PubMed]

A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Martín-Moreno, L.

S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Matsuura, J.

J. Matsuura, M. Fukui, O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

Moreno, E.

Moreno, Esteban

Nagpal, P.

P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Nesterov, M. L.

Norris, D. J.

P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Ogawa, Tetsuo

Oh, S. H.

P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Ran, L.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[CrossRef]

Ran, L. X.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

RaymondOoi, C. H.

Ruan, Z. C.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[CrossRef] [PubMed]

Shen, L.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[CrossRef]

Shen, L. F.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[CrossRef]

Shen, X. P.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

Shi, J. H.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

Shu, C.

C. Shu, A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

Simonian, S. G.

V. H. Arakelian, L. A. Bagdassarian, S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

Tada, O.

J. Matsuura, M. Fukui, O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

Takahara, J.

J. Takahara, T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

Thibaudeau, C.

C. Thibaudeau, A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

Tilley, D. R.

M. G. Cottam, D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[CrossRef]

Wallis, R. F.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

Wu, J. J.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

Yang, T. J.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

Zhang, X.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[CrossRef]

Zhou, Y. J.

Y. J. Zhou, Q. Jiang, T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

Y. J. Zhou, Q. Jiang, T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[CrossRef]

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[CrossRef]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[CrossRef]

J. Magn. Magn. Mater. (1)

V. H. Arakelian, L. A. Bagdassarian, S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. C-SolidState Phys. (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[CrossRef]

J. Phys. D-Appl. Phys. (1)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[CrossRef]

Laser Photon. Rev. (1)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

Nat. Photonics (1)

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. express (1)

Opt. Lett. (1)

Opt. Photon. News (1)

J. Takahara, T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

Phys. Lett. A (1)

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

S. Maier, S. Andrews, L. Martín-Moreno, F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[CrossRef]

Progress in Electromagnetic Research M (1)

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[CrossRef]

Science (3)

P. Nagpal, N. C. Lindquist, S. H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[CrossRef] [PubMed]

Solid State Commun. (4)

J. Matsuura, M. Fukui, O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

M. Marchand, A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

C. Shu, A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

C. Thibaudeau, A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

Other (3)

Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

M. G. Cottam, D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) A 1D periodical groove arrays of width a, depth h separated by a period d. We are interested in s-polarized surface modes propagating along the x direction with E lying in the xy plane. (b) In the effective medium approximation the structure displayed in (a) behaves as a homogeneous but anisotropic layer of thickness h on the surface of a PMC.

Fig. 2
Fig. 2

The normalized dispersion relations (ω(k)) of the SSMPs supported by a 1D array of grooves with geometrical parameters a/d = 0.4, h/d = 0.8. The green line is the theoretical result obtained with Eq. (16), the red line and blue line with open circles render the numerical results of the SSPPs and SSMPs respectively, and the dark line is light line.

Fig. 3
Fig. 3

Schematic diagrams of the simulation models. (a) and (b) are the geometries of the periodical groove arrays of width a = 0.4d, depth h = 0.8d separated by a period d on the surface of PEC and PMC with infinite in y direction separately. In which, the gray areas in (a) and (b) represent the vacuum, the red lines in (a) represent the PEC boundary conditions and the light blue lines in (b) are the PMC boundary conditions and the black lines in (a) and (b) along z direction are set as Bloch boundary conditions. (c) and (d) are the surface electric field vectors (the red arrow lines in (c) and in V/m) and magnetic field vectors (the light blue arrow lines in (d) and in A/m) of the unit cell on the xoz plane respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E y I = n A n e i k x ( n ) x e q z ( n ) z ,
E y II = B cos [ k 0 ( z + h ) ] ,
H x = i ω μ 0 E y z ,
H z = i ω μ 0 E y x ,
n A n e i k x ( n ) x = B cos ( k 0 h ) ,
n A n S n = B cos ( k 0 h ) ,
S n = 1 a a / 2 a / 2 e i k x ( n ) x e q z ( n ) z d x = sin c ( k x ( n ) a 2 ) .
n i q z ( n ) ω μ 0 A n e i k x ( n ) x = i k 0 ω μ 0 B sin ( k 0 h ) ,
n i q z ( n ) ω μ 0 A n e i k x ( n ) x = 0 .
A n = B k 0 a q z ( n ) d sin ( k 0 h ) S 0 .
k x 2 k 0 2 k 0 = a d S 0 2 tan ( k 0 h ) ,
μ x = a / d , μ y = μ z = .
μ x ε y = μ x ε z ,
ε y = ε z = 1 / μ x = d / a .
R = ( k z μ x k 0 ) + ( k 0 + k z μ x ) e i 2 k 0 h ( k z μ x + k 0 ) ( k 0 k z μ x ) e i 2 k 0 h .
k x 2 k 0 2 k 0 = a d tan ( k 0 h ) .

Metrics