Abstract

Record low optical threshold power and high slope efficiency are reported for arrays of distributed Bragg reflector lasers integrated within an ultra-low-loss Si3N4 planar waveguide platform. Additionally, arrays of distributed feedback laser designs are presented that show improvements in pump-to-signal conversion efficiency of over two orders of magnitude beyond that found in previously published devices. Lithographically defined sidewall gratings provide the required lasing feedback for both cavity configurations. Lasing emission is shown over a wide wavelength range (1534 to 1570 nm), with output powers up to 2.1 mW and side mode suppression ratios in excess of 50 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [CrossRef] [PubMed]
  2. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. Heck, J. S. Barton, J. E. Bowers, D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181–1188 (2013).
    [CrossRef] [PubMed]
  3. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
    [CrossRef] [PubMed]
  4. H. Park, A. Fang, S. Kodama, J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
    [CrossRef] [PubMed]
  5. S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
    [CrossRef] [PubMed]
  6. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  7. J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [CrossRef]
  8. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. S. Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [CrossRef] [PubMed]
  9. F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
    [CrossRef]
  10. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [CrossRef]
  11. E. H. Bernhardi, “Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications,” Ph.D. dissertation (Department of Electrical Engineering, Mathematics, and Computer Science, University of Twente, 2012).
  12. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
    [CrossRef]
  13. Purnawirman, E. Hosseini, J. Bradley, J. Sun, G. Leake, T. Adam, D. Coolbaugh, and M. Watts, “CMOS compatible high power erbium doped distributed feedback lasers,” in Advanced Photonics 2013, H. Chang, V. Tolstikhin, T. Krauss, and M. Watts, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper IM2A.4.
  14. D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
    [CrossRef]
  15. J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
    [CrossRef]

2013 (4)

2012 (1)

2011 (2)

2010 (1)

2009 (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

2005 (1)

2004 (1)

F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

1997 (1)

D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
[CrossRef]

1996 (1)

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Adam, T. N.

Agazzi, L.

Amin, J.

D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
[CrossRef]

Aust, J. A.

D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
[CrossRef]

Ay, F.

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Aydinli, A.

F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Barton, J. S.

Bauters, J. F.

Belt, M.

Berdejo, V.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Bessette, J. T.

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Blumenthal, D. J.

Bovington, J.

Bowers, J.

Bowers, J. E.

Bradley, J.

Bradley, J. D.

Bradley, J. D. B.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Bruinink, C. M.

Cai, Y.

Camacho-Aguilera, R. E.

Coolbaugh, D.

Davenport, M. L.

Fang, A.

Fang, A. W.

Ferrer, A.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Gary, J. M.

D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
[CrossRef]

Geskus, D.

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Heck, M. J.

Heck, M. J. R.

Heideman, R. G.

Hosseini, E. S.

Hoyo, J.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Huffman, T.

John, D. D.

Kaye, B.

Kimerling, L. C.

Kodama, S.

Leake, G.

Leinse, A.

Li, W.

Liang, D.

Michel, J.

Moreira, R.

Ortega-Feliu, I.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Park, H.

Patel, N.

Peters, J.

Pollnau, M.

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Polman, A.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Purnawirman, J.

Rebolledo, M. A.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Romagnoli, M.

Ruiz, A.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Smit, M. K.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Solis, J.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Srinivasan, S.

Sun, J.

Toney Fernandez, T.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Valles, J. A.

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

van Dam, C.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Veasey, D. L.

D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
[CrossRef]

Watts, M. R.

Wörhoff, K.

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

D. L. Veasey, J. M. Gary, J. Amin, J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33(10), 1647–1662 (1997).
[CrossRef]

J. Appl. Phys. (1)

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

J. Hoyo, V. Berdejo, T. Toney Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, J. Solis, “Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm,” Laser Phys. Lett. 10(10), 105802 (2013).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Other (2)

E. H. Bernhardi, “Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications,” Ph.D. dissertation (Department of Electrical Engineering, Mathematics, and Computer Science, University of Twente, 2012).

Purnawirman, E. Hosseini, J. Bradley, J. Sun, G. Leake, T. Adam, D. Coolbaugh, and M. Watts, “CMOS compatible high power erbium doped distributed feedback lasers,” in Advanced Photonics 2013, H. Chang, V. Tolstikhin, T. Krauss, and M. Watts, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper IM2A.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Left) Cross-section view of the laser waveguide structure. (Right) Resulting TE-polarized mode profile for laser light operating at 1550 nm.

Fig. 2
Fig. 2

Top-down schematic images of the Si3N4 waveguide DBR (a) and DFB (b) laser cavities. The sidewall grating mirrors are exaggerated to adequately show their detail. Also shown are top-down SEM images of the fabricated Si3N4 sidewall grating DBR high reflectivity (c) and low reflectivity (d) mirrors and DFB quarter-wave phase shift section (e). The rounded edges of the fabricated device differ from the intended square-like form of the device design due to a necessary over-exposure of the photoresist during the lithography step.

Fig. 3
Fig. 3

Measurement setup of the experiment. The inset photo shows the device under 974 nm excitation. For the DBR devices signal light was collected from the side with the low reflectivity mirror. The green emission seen in the waveguide is due to the cooperative upconversion process the erbium atoms experience when under pump excitation [12].

Fig. 4
Fig. 4

(a) DBR laser power as a function of launched pump power for the device operating at 1546 nm. (b) DFB laser power as a function of launched pump power for the device operating at 1560 nm.

Fig. 5
Fig. 5

(a) Superimposed DBR output laser spectra. (b) Superimposed DFB output laser spectra.

Fig. 6
Fig. 6

Top-down schematic of a possible double-pass optical gain DBR structure. Λ1 and Λ2 denote the Bragg period for the signal and pump light, respectively.

Tables (1)

Tables Icon

Table 1 Measured Performance Parameters of each DBR and DFB Laser

Metrics