Abstract

Two simple external cavity diode laser designs using fibre pigtailed gain chips are tested and their properties compared with a high end DBR fibre laser. These ECDLs demonstrate a FWHM linewidth as low as 5.2kHz with a fitted Lorentzian FWHM linewidth as low as 1.6kHz. Tuning ranges of 200nm covering 1420nm to 1620nm were demonstrated. To the best of our knowledge these are the narrowest linewidth and most broadly tunable external cavity diode lasers reported to date. The improvement in linewidth is attributed to greatly enhanced acoustic isolation allowed by using fiber coupled gain chips and by replacing kinematic mounts with a pair of rotatable wedges for cavity alignment which eliminates acoustic resonances. A detailed description and discussion of techniques used to characterize the frequency noise and linewidths of these lasers is provided.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Tunable Lasers Handbook (Academic, San Diego, 1995).
  2. J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
    [CrossRef]
  3. D. Y. Shen, J. K. Sahu, W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
    [CrossRef] [PubMed]
  4. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
    [CrossRef] [PubMed]
  5. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
    [CrossRef]
  6. S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 .
    [CrossRef]
  7. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:.
    [CrossRef] [PubMed]
  8. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991), http://scitation.aip.org/content/aip/journal/rsi/62/1/10.1063/1.1142305 .
    [CrossRef]
  9. J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26(5), 443–477 (1985), http://www.tandfonline.com/doi/abs/10.1080/00107518508210984 .
    [CrossRef]
  10. K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 .
    [CrossRef]
  11. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
    [CrossRef]
  12. L. Nilse, H. J. Davies, C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38(3), 548–553 (1999).
    [CrossRef] [PubMed]
  13. S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .
  14. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=76663 .
    [CrossRef]
  15. R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19(3), 110–112 (1983), http://digital-library.theiet.org/content/journals/10.1049/el_19830079 .
    [CrossRef]
  16. R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback,” Electron. Lett. 21(15), 658–659 (1985), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4250665 .
    [CrossRef]
  17. N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5(4), 510–515 (1987), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075530 .
    [CrossRef]
  18. J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 .
    [CrossRef]
  19. D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83(2), 023107 (2012), http://scitation.aip.org/content/aip/journal/rsi/83/2/10.1063/1.3687441 .
    [CrossRef] [PubMed]
  20. H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
    [CrossRef]
  21. S. D. Saliba, R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48(36), 6961–6966 (2009).
    [CrossRef] [PubMed]
  22. T. Nazarova, C. Lisdat, F. Riehle, U. Sterr, “Low-frequency-noise diode laser for atom interferometry,” J. Opt. Soc. Am. B 25(10), 1632–1638 (2008).
    [CrossRef]
  23. K. Numata, J. Camp, M. A. Krainak, L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18(22), 22781–22788 (2010).
    [CrossRef] [PubMed]
  24. P. Zorabedian, W. R. Trutna., “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13(10), 826–828 (1988).
    [CrossRef] [PubMed]
  25. E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
    [CrossRef]
  26. T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
    [CrossRef]
  27. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
    [CrossRef]
  28. M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
    [CrossRef]
  29. N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
    [CrossRef]
  30. P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24(17), 2757–2761 (1985).
    [CrossRef] [PubMed]
  31. T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 .
    [CrossRef]
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  33. L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
    [CrossRef]
  34. J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992).
    [CrossRef]
  35. H. Tsuchida, “Limitation and improvement in the performance of recirculating delayed self-heterodyne method for high-resolution laser lineshape measurement,” Opt. Express 20(11), 11679–11687 (2012).
    [CrossRef] [PubMed]
  36. P. Horak, W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14(9), 3923–3928 (2006).
    [CrossRef] [PubMed]
  37. G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [CrossRef] [PubMed]

2013 (1)

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

2012 (4)

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83(2), 023107 (2012), http://scitation.aip.org/content/aip/journal/rsi/83/2/10.1063/1.3687441 .
[CrossRef] [PubMed]

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
[CrossRef] [PubMed]

H. Tsuchida, “Limitation and improvement in the performance of recirculating delayed self-heterodyne method for high-resolution laser lineshape measurement,” Opt. Express 20(11), 11679–11687 (2012).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

S. D. Saliba, R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48(36), 6961–6966 (2009).
[CrossRef] [PubMed]

T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
[CrossRef]

S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 .
[CrossRef]

2008 (1)

2007 (1)

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

2006 (3)

2004 (2)

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
[CrossRef]

2003 (1)

S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .

2002 (1)

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:.
[CrossRef] [PubMed]

1999 (1)

1997 (1)

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
[CrossRef]

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

1992 (2)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 .
[CrossRef]

J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992).
[CrossRef]

1991 (2)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991), http://scitation.aip.org/content/aip/journal/rsi/62/1/10.1063/1.1142305 .
[CrossRef]

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=76663 .
[CrossRef]

1989 (1)

J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 .
[CrossRef]

1988 (1)

1987 (1)

N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5(4), 510–515 (1987), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075530 .
[CrossRef]

1986 (1)

L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
[CrossRef]

1985 (3)

P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24(17), 2757–2761 (1985).
[CrossRef] [PubMed]

R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback,” Electron. Lett. 21(15), 658–659 (1985), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4250665 .
[CrossRef]

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26(5), 443–477 (1985), http://www.tandfonline.com/doi/abs/10.1080/00107518508210984 .
[CrossRef]

1983 (1)

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19(3), 110–112 (1983), http://digital-library.theiet.org/content/journals/10.1049/el_19830079 .
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 .
[CrossRef]

Adams, C. S.

Alam, S. U.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Altin, P. A.

Baillard, X.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Bennetts, S.

Bize, S.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Burrus, C. A.

J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 .
[CrossRef]

Camp, J.

Camparo, J. C.

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26(5), 443–477 (1985), http://www.tandfonline.com/doi/abs/10.1080/00107518508210984 .
[CrossRef]

Chen, B.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Clairon, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Clarkson, W. A.

D. Y. Shen, J. K. Sahu, W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
[CrossRef] [PubMed]

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Close, J. D.

Cranch, G. A.

S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 .
[CrossRef]

Davies, H. J.

Dawson, J. W.

J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992).
[CrossRef]

Debs, J. E.

Devlin, W. J.

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19(3), 110–112 (1983), http://digital-library.theiet.org/content/journals/10.1049/el_19830079 .
[CrossRef]

Di Domenico, G.

Erbert, G.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Ertmer, W.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Feng, M.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Feng, Z.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Foster, S.

S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 .
[CrossRef]

Gao, L.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Gauguet, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Geng, J.

Gilowski, M.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Grudinin, A. B.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Hänsch, T. W.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:.
[CrossRef] [PubMed]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Herr, W.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Hieta, T.

T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991), http://scitation.aip.org/content/aip/journal/rsi/62/1/10.1063/1.1142305 .
[CrossRef]

Holzwarth, R.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:.
[CrossRef] [PubMed]

Horak, P.

Hu, Y.

Ikonen, E.

T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
[CrossRef]

Jiang, S.

Kahn, J. M.

J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 .
[CrossRef]

Kaneda, Y.

Kikuchi, K.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 .
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Krainak, M. A.

Kruger, M.

L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
[CrossRef]

Kuhn, C. C. N.

Kwon, T. Y.

S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .

Lam, M. Y.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Laurent, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Lee, H. S.

S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .

Lemonde, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Lisdat, C.

Liu, A. Q.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Loh, W. H.

Ludvigsen, H.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
[CrossRef]

Luvsandamdin, E.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 .
[CrossRef]

Mandelberg, H. I.

L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
[CrossRef]

McDonald, G. D.

McGrath, P.

L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
[CrossRef]

McNicholl, P.

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=76663 .
[CrossRef]

Metcalf, H. J.

Moser, C.

T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
[CrossRef]

Müller, T.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Mura, G.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 .
[CrossRef]

Nazarova, T.

Nilse, L.

Nilsson, J.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Numata, K.

Okoshi, T.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 .
[CrossRef]

Olsson, N. A.

N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5(4), 510–515 (1987), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075530 .
[CrossRef]

Park, N.

J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992).
[CrossRef]

Park, S. E.

S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .

Peters, A.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Peyghambarian, N.

Pietiläinen, A.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
[CrossRef]

Rasel, E. M.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Raybon, G.

J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 .
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Richter, L.

L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
[CrossRef]

Riehle, F.

Robins, N. P.

Rosenbusch, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

Sahm, A.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Sahu, J. K.

D. Y. Shen, J. K. Sahu, W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
[CrossRef] [PubMed]

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Saliba, S. D.

Sané, S. S.

Schiemangk, M.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Schilt, S.

Scholten, R. E.

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83(2), 023107 (2012), http://scitation.aip.org/content/aip/journal/rsi/83/2/10.1063/1.3687441 .
[CrossRef] [PubMed]

S. D. Saliba, R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48(36), 6961–6966 (2009).
[CrossRef] [PubMed]

Schubert, C.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Selvas, R.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Shen, D. Y.

Shin, E.-J.

S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .

Spiegelberg, C.

Spießberger, S.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 .
[CrossRef]

Sterr, U.

Stolpner, L.

Talvitie, H.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
[CrossRef]

Thomann, P.

Thompson, D. J.

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83(2), 023107 (2012), http://scitation.aip.org/content/aip/journal/rsi/83/2/10.1063/1.3687441 .
[CrossRef] [PubMed]

Tikhomirov, A.

S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 .
[CrossRef]

Tränkle, G.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Trutna, W. R.

Tsang, Y. H.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Tsuchida, H.

Turner, P. W.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:.
[CrossRef] [PubMed]

Vahala, K. J.

J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992).
[CrossRef]

Vainio, M.

T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
[CrossRef]

van der Ziel, J. P.

N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5(4), 510–515 (1987), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075530 .
[CrossRef]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Wang, N.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Wendrich, T.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Wicht, A.

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 .
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991), http://scitation.aip.org/content/aip/journal/rsi/62/1/10.1063/1.1142305 .
[CrossRef]

Wübbena, T.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Wyatt, R.

R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback,” Electron. Lett. 21(15), 658–659 (1985), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4250665 .
[CrossRef]

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19(3), 110–112 (1983), http://digital-library.theiet.org/content/journals/10.1049/el_19830079 .
[CrossRef]

Zaiser, M.

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Zhang, X.

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

Zorabedian, P.

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992), http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955 .
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111(2), 255–260 (2013), doi:.
[CrossRef]

Contemp. Phys. (1)

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26(5), 443–477 (1985), http://www.tandfonline.com/doi/abs/10.1080/00107518508210984 .
[CrossRef]

Electron. Lett. (3)

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19(3), 110–112 (1983), http://digital-library.theiet.org/content/journals/10.1049/el_19830079 .
[CrossRef]

R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback,” Electron. Lett. 21(15), 658–659 (1985), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4250665 .
[CrossRef]

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4244210 .
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Richter, H. I. Mandelberg, M. Kruger, P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072909 .
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. W. Dawson, N. Park, K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett. 4(9), 1063–1066 (1992).
[CrossRef]

N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, X. Zhang, “Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253231 .
[CrossRef]

J. M. Kahn, C. A. Burrus, G. Raybon, “High-stability 1.5μm external-cavity semiconductor lasers for phase-lock applications,” IEEE Photon. Technol. Lett. 1(7), 159–161 (1989), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=36024 .
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. E. Park, T. Y. Kwon, E.-J. Shin, H. S. Lee, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202029 .

J. Lightwave Technol. (3)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=76663 .
[CrossRef]

N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5(4), 510–515 (1987), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1075530 .
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002), doi:.
[CrossRef] [PubMed]

Opt. Commun. (4)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995), http://www.sciencedirect.com/science/article/pii/003040189500146Y .
[CrossRef]

T. Hieta, M. Vainio, C. Moser, E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282(15), 3119–3123 (2009), http://www.sciencedirect.com/science/article/pii/S0030401809004180 .
[CrossRef]

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006), http://www.sciencedirect.com/science/article/pii/S0030401806004561 .
[CrossRef]

M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E. M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280(2), 443–447 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807008577 .
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. U. Alam, A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10(1), 5–30 (2004), http://www.sciencedirect.com/science/article/pii/S1068520003000464 .
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

S. Foster, G. A. Cranch, A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009), http://link.aps.org/doi/10.1103/PhysRevA.79.053802 .
[CrossRef]

Rev. Sci. Instrum. (3)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991), http://scitation.aip.org/content/aip/journal/rsi/62/1/10.1063/1.1142305 .
[CrossRef]

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83(2), 023107 (2012), http://scitation.aip.org/content/aip/journal/rsi/83/2/10.1063/1.3687441 .
[CrossRef] [PubMed]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68(1), 1–7 (1997), http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810 .
[CrossRef]

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

F. J. Duarte, Tunable Lasers Handbook (Academic, San Diego, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Grating based ECDL (G-ECDL) design. (b) Filter based ECDL (F-ECDL) design.

Fig. 2
Fig. 2

Insertion loss (IL) vs. wavelength at normal incidence for the commercial DWDM filters used in the F-ECDL. Indicative sample variation in the filter performance is plotted for two different loss scales.

Fig. 3
Fig. 3

Output power was measured as a function of wavelength (while being tuned over several tens of nm) for both the (a) G-ECDL and (b) F-ECDL configurations. Insets: Output power vs. diode current for each configuration is plotted at a given wavelength as indicated on each figure.

Fig. 4
Fig. 4

Linewidth measurement configuration using the delayed self-heterodyne interferometer (DSHI) method with delay lines of 2.27km or 83km.

Fig. 5
Fig. 5

Delayed self heterodyne measurement with 83km delay line, 1kHz resolution bandwidth and 150 averages. (left) 2.5MHz span with fitted Lorentzians - filter based ECDL (3.28kHz FWHM fit giving a 1.64kHz FWHM linewidth), Grating based ECDL (6.72kHz FWHM fit giving a 3.36kHz FWHM linewidth), The sidebands on the Rock prevent an accurate Lorentzian fit. (right) 100kHz span, with fitted Gaussians – filter based ECDL (8.6kHz FWHM fit giving a 6.1kHz FWHM linewidth), Grating based ECDL (14.1kHz FWHM fit giving a 10.0kHz FWHM linewidth), NP Photonics Rock (16.7kHz FWHM fit giving a 11.8kHz FWHM linewidth).

Fig. 6
Fig. 6

Delayed self heterodyne measurement with 2.27km delay line, 1kHz resolution bandwidth and 150 averages and 2.5MHz span. Also plotted is the calculated spectrum from Eq. (1) using a 1kHz FWHM Gaussian filter assuming a coherence time τc = 1.43ms corresponding to a Lorentzian FWHM linewidth 1/(πτc) [32] of 220Hz.

Fig. 7
Fig. 7

Linewidth measurement using an unbalanced Mach-Zehnder Interferometer (MZI) with a path imbalance (delay line) of 300m.

Fig. 8
Fig. 8

Frequency noise power spectrum in Hz/Sqrt(Hz) using the unbalanced Mach Zehnder Interferometer with a 300m path imbalance and the interferometer locked to the respective lasers using a PID locking loop with a 30Hz bandwidth. The peaks at 30Hz results from ripple in the locking loop at the 30Hz corner frequency. The beta separation line described in [37] is also shown (dashed). Noise at frequencies less than the intersection with the beta separation line contributes primarily to Gaussian noise while noise at higher frequencies contributes primarily to Lorentzian noise in the wings of an autocorrelation spectrum.

Tables (1)

Tables Icon

Table 1 Summary of linewidth results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S( ω,τ )= 1 2 P 0 2 τ c 1+ ( ω±Ω ) 2 τ c 2 { 1 e | τ |/ τ c [ cos( ( ω±Ω )| τ | )+ sin( ( ω±Ω )| τ | ) ( ω±Ω ) τ c ] + 1 2 P 0 2 π e | τ |/ τ c δ( ω±Ω ) }

Metrics