Abstract

This work demonstrates a form of arrayed transmitting apertureless near-field photolithography, called apertureless beam pen lithography. An array of fully chromium-coated polyurethane acrylate (PUA) pyramidal microstructures was illuminated by a traditional Ultraviolet (UV) lamp to generate an array of massive UV beam pens for realizing apertureless beam pen lithography. Experimental results reveal that significant UV energy can pass through the apex of a fully metal-coated PUA pyramid even though the thickness of the metallic coating exceeded the penetration depth. The patterned photoresist profiles were 117 nm deep and the full-width-at-half-magnitude (FWHM) was 180 nm when the exposure dosage was 54 mJ/cm2 and the wavelength was 365 nm. Both depth and FWHM increased with exposure dosage, implying that the profiles depended on exposure dosage rather than on physical imprinting. With the adjustment of the thickness of the photoresist layer and the exposure parameters, the lift-off process yields arrayed metal dots with a diameter of 300 nm. Finite-element simulation of the intensity distribution near the apex of the pyramid and within the photoresist layer was carried out to reveal that the energy concentration within the pyramids is increased by approximately an order of magnitude, significantly enhancing the UV energy that passes through the fully metal-coated apex. The contrast curve model of the photoresist was used to calculate the patterned photoresist profiles for various energies. Experimental results, theoretical analysis and potential improvements of the method are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
    [CrossRef] [PubMed]
  2. X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
    [CrossRef] [PubMed]
  3. H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
    [CrossRef] [PubMed]
  4. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
    [CrossRef]
  5. L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
    [CrossRef] [PubMed]
  6. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
    [CrossRef]
  7. I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
    [CrossRef]
  8. I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
    [CrossRef]
  9. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
    [CrossRef] [PubMed]
  10. G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
    [CrossRef]
  11. I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
    [CrossRef]
  12. K. R. Williams, R. S. Muller, “Etch Rates for Micromachining Processing,” J. Microelectromech. Syst. 5(4), 256–269 (1996).
    [CrossRef]
  13. D. Qin, Y. Xia, G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc. 5(3), 491–502 (2010).
    [CrossRef] [PubMed]
  14. J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
    [CrossRef] [PubMed]
  15. J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
    [CrossRef]
  16. P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
    [CrossRef]
  17. http://www.minuta.co.kr/products/products_mold_template.html (Accessed February 28, 2014)
  18. D. W. Lynch and W. R. Hunter, “Chromium (Cr),” in Handbook of Optical Constants of Solids II, E.D. Palik, ed. (Academic, 1991).
  19. R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
    [CrossRef]
  20. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).
  21. Z. M. Zhang, Nano/Microscale Heat Transfer, (McGraw-Hill, 2007), Chap. 8.
  22. E. Lee, J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103(8), 083550 (2008).
    [CrossRef]
  23. E. Lee, J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
    [CrossRef] [PubMed]
  24. Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296–19309 (2011).
    [CrossRef] [PubMed]

2013

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
[CrossRef]

2012

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

2011

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296–19309 (2011).
[CrossRef] [PubMed]

2010

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

D. Qin, Y. Xia, G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc. 5(3), 491–502 (2010).
[CrossRef] [PubMed]

2008

E. Lee, J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103(8), 083550 (2008).
[CrossRef]

E. Lee, J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

2004

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

2003

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

1998

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

1996

K. R. Williams, R. S. Muller, “Etch Rates for Micromachining Processing,” J. Microelectromech. Syst. 5(4), 256–269 (1996).
[CrossRef]

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

1995

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Aeschimann, L.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Ahn, C. W.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Akiyama, T.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

Baek, K. H.

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

Baek, S. J.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Barycka, I.

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Brown, K. A.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

Chai, J.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

Chen, X.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

Chen, Y.

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Choi, S. J.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Dandliker, R.

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

De Rooij, N. F.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

Descrovi, E.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

Do, L. M.

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

Eckert, R.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

Giam, L. R.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Hahn, J. W.

Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296–19309 (2011).
[CrossRef] [PubMed]

E. Lee, J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103(8), 083550 (2008).
[CrossRef]

E. Lee, J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

He, S.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

Heinzelmann, H.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

Herzig, H. P.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Hu, H.

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Huo, F.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Jakabovic, J.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Jang, H. I.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Jang, J.

Jeon, S.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Jung, H.

Kim, E.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Kim, J. H.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Kim, J. Y.

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

Kim, S.

Kim, T. W.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Kim, Y.

Kim, Z. S.

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

King, W. P.

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Kovac, J.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Kovacs, G. T. A.

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Kubicova, I.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
[CrossRef]

Kuzma, A.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Lee, E.

E. Lee, J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

E. Lee, J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103(8), 083550 (2008).
[CrossRef]

Lee, H. H.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Lee, J. Y.

Liao, X.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

Liu, G.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

Maluf, N. I.

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Mensing, G.

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Mirkin, C. A.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Muller, R. S.

K. R. Williams, R. S. Muller, “Etch Rates for Micromachining Processing,” J. Microelectromech. Syst. 5(4), 256–269 (1996).
[CrossRef]

Nakagawa, W.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

Norwood, R. A.

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

Novak, J.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Park, J.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Park, J. H.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Park, K. S.

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

Petersen, K. E.

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Pudis, D.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
[CrossRef]

Qin, D.

D. Qin, Y. Xia, G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc. 5(3), 491–502 (2010).
[CrossRef] [PubMed]

Rogers, J. A.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Schmucker, A. L.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

Shannon, M. A.

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Shim, W.

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

Skriniarova, J.

I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
[CrossRef]

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Staufer, U.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Suh, D.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Suslik, L.

I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
[CrossRef]

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Thiery, L.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

Vaccaro, L.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Whitesides, G. M.

D. Qin, Y. Xia, G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc. 5(3), 491–502 (2010).
[CrossRef] [PubMed]

Whitney, L. A.

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

Williams, K. R.

K. R. Williams, R. S. Muller, “Etch Rates for Micromachining Processing,” J. Microelectromech. Syst. 5(4), 256–269 (1996).
[CrossRef]

Xia, Y.

D. Qin, Y. Xia, G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc. 5(3), 491–502 (2010).
[CrossRef] [PubMed]

Yeom, J.

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Yoo, P. J.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

Zhang, H.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Zheng, G.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Zheng, Z.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Zubel, I.

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Adv. Mater.

J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Adv. Mater. 23(7), 860–864 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85(22), 5340–5342 (2004).
[CrossRef]

Appl. Surf. Sci.

I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac, J. Jakabovic, L. Suslik, J. Novak, A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Appl. Surf. Sci. 269, 116–119 (2013).
[CrossRef]

Chem. Mater.

P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chem. Mater. 16(24), 5000–5005 (2004).
[CrossRef]

J. Appl. Phys.

E. Lee, J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103(8), 083550 (2008).
[CrossRef]

J. Microelectromech. Syst.

K. R. Williams, R. S. Muller, “Etch Rates for Micromachining Processing,” J. Microelectromech. Syst. 5(4), 256–269 (1996).
[CrossRef]

J. Microsc.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. De Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209(3), 182–187 (2003).
[CrossRef] [PubMed]

Nanotechnology

E. Lee, J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology 23(17), 175303 (2012).
[CrossRef] [PubMed]

Nat Commun

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nat Commun 4, 2103 (2013).
[CrossRef] [PubMed]

Nat. Nanotechnol.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, C. A. Mirkin, “Beam pen lithography,” Nat. Nanotechnol. 5(9), 637–640 (2010).
[CrossRef] [PubMed]

Nat. Protoc.

D. Qin, Y. Xia, G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc. 5(3), 491–502 (2010).
[CrossRef] [PubMed]

Opt. Express

Optik (Stuttg.)

I. Kubicova, D. Pudis, L. Suslik, J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik (Stuttg.) 124(14), 1971–1973 (2013).
[CrossRef]

Proc. IEEE

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Proc. SPIE

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

Science

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, “Polymer Pen Lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Sens. Actuator A-Phys.

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Soft Matter

J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter 8(4), 1184–1189 (2012).
[CrossRef]

Other

http://www.minuta.co.kr/products/products_mold_template.html (Accessed February 28, 2014)

D. W. Lynch and W. R. Hunter, “Chromium (Cr),” in Handbook of Optical Constants of Solids II, E.D. Palik, ed. (Academic, 1991).

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).

Z. M. Zhang, Nano/Microscale Heat Transfer, (McGraw-Hill, 2007), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Complete flow diagram of fabrication of fully metal-coated PUA mold.

Fig. 2
Fig. 2

SEM image of silicon master mold with inverted pyramidal structures. Inverted pyramidal cavities are arranged in a rectangle with a period of 10 μm. Inset presents cross-section image of individual inverted pyramidal cavity, which has a base length of 2 μm and a depth of 1.4 μm.

Fig. 3
Fig. 3

Replication process of UV-curable PUA micro-pyramidal structures performed in a vacuum.

Fig. 4
Fig. 4

SEM image of PUA micro-pyramid replicated from silicon master mold. PUA micro-pyramids are arranged in a rectangle with a period of 10 μm. In inset, bottom width and height of pyramids are 2 μm and 1.4 μm, respectively. Radius of curvature of pyramidal tip is estimated to be less than 100 nm.

Fig. 5
Fig. 5

AFM topographic measurements of patterned PR structures. Gaussian curve-fitting approximates cross-section profile. (a) Exposure time is 3 s: depth of PR is 117 nm and FWHM is 180 nm; (b) exposure time is 4 s: depth of PR is 140 nm and FWHM is 231 nm; (c) exposure time is 5 s: depth of PR is 154 nm and FWHM is 269 nm.

Fig. 6
Fig. 6

Variation of cross-section profile with exposure time. Both depth and FWHM of PR structure are proportional to exposure time.

Fig. 7
Fig. 7

SEM images of (a) an indented pattern without UV exposure and PR developing, and (b) an etched profile after UV exposure and developing process.

Fig. 8
Fig. 8

SEM image of patterned metal dots. Periodicity of array of metal dots is 10 μm. Inset shows single metal dot. Diameter of metal dot is 300 nm.

Fig. 9
Fig. 9

Numerical simulation of apertureless near-field lithography. (a) A one-quarter model with planes of symmetry. Y-polarized plane wave is incident from top surface of PUA in –Z direction; planes perpendicular to incident E-field (XZ- or TE-plane) have PEC boundary conditions; planes perpendicular incident H-field (YZ- or TM-plane) have PMC boundary conditions. (b) Average UV power density distribution on TE- and TM-planes near fully chromium-coated PUA pyramidal structure with base angle 54.74°. (c) Theoretically calculated patterned photoresist profile based on contrast curve model of photoresist with exposure time of 5 s. (d) Variation of calculated photoresist profile with exposure time.

Fig. 10
Fig. 10

Comparison of UV power density distributions of fully metal-coated surface structures. UV power density (P) is normalized to incident power density (P0). (a) Surface with no micro-structures: transmitted power is less than 1% of incident power because thickness of metallic coating is six times penetration depth. (b) Arrayed micro-pillars with a diameter of 1 μm and a height of 1 μm. (c) Arrayed micro-pyramids with a base length of 2 μm and a base angle of 45°. (d) Arrayed micro-pyramids with a base length of 2 μm and a base angle of 54.74°.

Fig. 11
Fig. 11

Comparison of UV power density distributions of variously thickness of chromium coating on PUA micro-pyramids with base angle 54.74°. UV power density (P) is normalized to incident power density (P0). (a) Bare PUA pyramid without metallic coating. (b) PUA pyramid with 60 nm-thick chromium coating. (c) PUA pyramid with 54 nm-thick chromium coating. (d) PUA pyramid with 66 nm-thick chromium coating.

Fig. 12
Fig. 12

Comparison of UV power density distributions of variously base length of metal- coated PUA micro-pyramids with base angle 54.74°. UV power density (P) is normalized to incident power density (P0). (a) PUA pyramid with a base length of 0.4 μm. (b) PUA pyramid with a base length of 2 μm. (c) PUA pyramid with a base length of 1.8 μm. (d) PUA pyramid with a base length of 2.2 μm.

Tables (1)

Tables Icon

Table 1 Optical Properties of Materials at a Wavelength of 365 nm

Metrics